DOI QR코드

DOI QR Code

Effects of Post-Annealing on Properties of HfO2 Films Grown by ALD

ALD법으로 성장한 HfO2 박막의 열처리에 따른 특성변화

  • Lee, J.W. (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Ham, M.H. (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Maeng, W.J. (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, H. (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Myoung, J.M. (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University)
  • 이재웅 (연세대학교 신소재공학과) ;
  • 함문호 (연세대학교 신소재공학과) ;
  • 맹완주 (포항공과대학교 신소재공학과) ;
  • 김형준 (포항공과대학교 신소재공학과) ;
  • 명재민 (연세대학교 신소재공학과)
  • Published : 2007.02.27

Abstract

The effects of post-annealing of high-k $HfO_2$ thin films grown by atomic layer deposition method were investigated by the annealing treatments of $400-600^{\circ}C$. $Pt/HfO_2/p-Si\;MOS$ capacitor structures were fabricated, and then the capacitance-voltage and current-voltage characteristics were measured to analyze the electrical characteristics of dielectric layers. The X-ray diffraction analyses revealed that the $500^{\circ}C-annealed\;HfO_2$ film remained to be amorphous, and the $600^{\circ}C-annealed\;HfO_2$ film was crystallized. The annealing treatment at $500^{\circ}C$ resulted in the highest capacitance and the lowest leakage current due to the reduction of defects in the $HfO_2$ films and non-crystallization. Our results suggest that post-annealing treatments are a critical factor in improving the characteristics of gate dielectric layer.

Keywords

References

  1. H.S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S.-I. Nakamura, M. Saito and H. Iwai, IEDM Technical Digest, 593 (1994) https://doi.org/10.1109/IEDM.1994.383340
  2. J.- Y. Zhang., I. W. Boyd, B. J. O'Sullivan, P. K. Hurley, P. V. Kelly and J.-P. Senateur, J. Non-Cryt. Solids, 303, 134 (2002) https://doi.org/10.1016/S0022-3093(02)00973-0
  3. J. H. Hong, W. J. Choi and J. M. Myoung, Microelectron. Eng., 70(1), 35 (2003) https://doi.org/10.1016/S0167-9317(03)00388-5
  4. P. Balk, Adv. Mater., 7, 703 (1995) https://doi.org/10.1002/adma.19950070804
  5. J. H. Hong, T. H. Moon and J. M. Myoung, Microelectron. Eng., 75, 263 (2004) https://doi.org/10.1016/j.mee.2004.05.008
  6. Y. Oshita, A. Ogura, A. Hoshino, T. Suzuki, S. Hiiro and H. Machida, J. Cryst. Growth, 235, 365 (2002) https://doi.org/10.1016/S0022-0248(01)01833-4
  7. K. Kukli, M. Ritala, T. Sajavaara, J. Keinonen and M. Leskela, Thin Solid Films, 416, 72 (2002) https://doi.org/10.1016/S0040-6090(02)00612-0
  8. J. Lee and C. Lee, Kor. J. Mater. Res., 15(11), 741 (2005) https://doi.org/10.3740/MRSK.2005.15.11.741
  9. K. Kukli, J. Ihanus, M. Ritala and M. Leskela, Appl. Phys. Lett., 68, 3737 (1996) https://doi.org/10.1063/1.115990
  10. E. P. Gusev, C. Cabral Jr., M. Copel, C. D'Emie and M. Gribelyuk, Mieroeleetron. Eng., 69, 145(2003) https://doi.org/10.1016/S0167-9317(03)00291-0
  11. B. C. M. Lai, N. H. Kung and J. Y. M. Lee, J. Appl. Phys., 85, 4087 (1999) https://doi.org/10.1063/1.370315
  12. Y. Taur and T.H. Ning, Fundamentals of Modem VLSI Devices (Cambridge University Press, New York, 1998), p. 82-86
  13. N. A. Chowdhury, R. Garg and D. Misra, Appl. Phys. Lett., 85, 3289, (2004) https://doi.org/10.1063/1.1805708
  14. T. H. Moon, M. H. Ham and J. M. Myoung, Appl. Phys. Lett., 86(10), 102903 (2005) https://doi.org/10.1063/1.1873049
  15. H. J. Song, C. S. Lee and S. W. Kang, Eleetroehem. Solid State Lett., 4, F13, (2001) https://doi.org/10.1149/1.1377835