References
- Bousfield, I. J. and P. N. Green. 1985. Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983. Int. J. Syst. Bacteriol. 35: 209 https://doi.org/10.1099/00207713-35-2-209
- Cha, C., P. Gao, Y. C. Chen, P. D. Shaw, and S. K. Farrand. 1998. Production of acyl-homoserine lactone quorumsensing signals by Gram-negative plant-associated bacteria. Mol. Plant-Microbe Interact. 11: 1119-1129 https://doi.org/10.1094/MPMI.1998.11.11.1119
- Chilton, M. D., T. C. Currier, S. K. Farrand, A. J. Bendich, M. P. Gordon, and E. W. Nester. 1974. Agrobacterium tumefaciens and P58 bacteriophage DNA not detected in crown gall tumour DNA. Proc. Natl. Acad. Sci. USA 71: 3672-3676
- Corpe, W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Methods 3: 215- 221 https://doi.org/10.1016/0167-7012(85)90049-1
- Dong, Y. H., J. L. Xu, X. Z. Li, and L. H. Zhang. 2001. Aii, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526-3531
- Doronina, N. V., Y. A. Trotsenko, B. B. Kuznetsov, T. P. Tourova, and M. S. Salkinoja-Salonen. 2002. Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. Int. J. Syst. Evol. Microbiol. 52: 773-776 https://doi.org/10.1099/ijs.0.02014-0
- Doronina, N. V., Y. A. Trotsenko, T. P. Tourova, B. B. Kuznetsov, and T. Leisinger. 2000. Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. - novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst. Appl. Microbiol. 23: 210-218 https://doi.org/10.1016/S0723-2020(00)80007-7
- Gallego, V., M. T. Garcia, and A. Ventosa. 2005. Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 55: 281-287 https://doi.org/10.1099/ijs.0.63319-0
- Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
- Green, P. N. and I. J. Bousfield. 1983. Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito & Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin & Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33: 875-877 https://doi.org/10.1099/00207713-33-4-875
- Green, P. N., I. J. Bousfield, and D. Hood. 1988. Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov. Int. J. Syst. Bacteriol. 38: 124-127 https://doi.org/10.1099/00207713-38-1-124
- Green, P. N. 1992. The genus Methylobacterium, pp. 2342- 2349. In Balows, A., Trüper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H. (eds.), The Prokaryotes, 2nd Ed., vol. III. Springer-Verlag, New York, U.S.A
- Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
- Lee, H. Y., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. B. Hoon, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
- Madhaiyan, M., S. Poonguzhali, J. H. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminasecontaining Methylobacterium fujisawaense. Planta 224: 268-278 https://doi.org/10.1007/s00425-005-0211-y
- Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, J. C. Yang, S. P. Sundaram, and T. M. Sa. 2004. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. 45: 315-324
- McClean, K. H., M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, M. Daykin, J. H. Lamb, S. Swift, B. W. Bycroft, G. S. A. B. Stewart, and P. Williams. 1997. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143: 3703-3711 https://doi.org/10.1099/00221287-143-12-3703
- McLean, R. J. C., L. S. Pierson, and C. Fuqua. 2004. A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods 58: 351-360 https://doi.org/10.1016/j.mimet.2004.04.016
-
Miller, J. H. 1972. Assay of
$\beta$ -galactosidase, pp. 352-355. In: Experiments of Molecular Genetics. Cold Spring Harbour Laboratory Press, New York - Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192
- Newton, J. A. and R. G. Fray. 2004. Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol. 6: 213- 224 https://doi.org/10.1111/j.1462-5822.2004.00362.x
- Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43: 93-96 https://doi.org/10.1023/B:GROW.0000038360.09079.ad
- Patt, T. E., G. C. Cole, and R. S. Hanson. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26: 226-229 https://doi.org/10.1099/00207713-26-2-226
- Penalver, C. G. N., D. Morin, F. Cantet, O. Saurel, A. Milon, and J. A. Vorholt. 2006. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580: 561-567 https://doi.org/10.1016/j.febslet.2005.12.062
- Piper, K. R., B. V. S. Bodman, and S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens Ti plasmid transfer by autoinduction. Nature 362: 448-450 https://doi.org/10.1038/362448a0
- Ravn, L., A. B. Christensen, S. Molin, M. Givskov, and L. Gram. 2001. Methods for identifying and quantifying acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J. Microbiol. Methods 44: 239-251 https://doi.org/10.1016/S0167-7012(01)00217-2
- Rosemeyer, V., J. Michiels, C. Verreth, and J. Vanderleyden. 1998. luxI and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol. 180: 815-821
- Ryu, J. H., M. Madhaiyan, S. Poonguzhali, W. J. Yim, P. Indiragandhi, K. A. Kim, R. Anandham, J. C. Yun, K. H. Kim, and T. M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622- 1628
- Shaw, P. D., G. Ping, S. L. Daly, C. Cha, J. E. Cronan, K. L. Rinehart, and S. K. Farrand. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94: 6036- 6041
- Steidle, A., K. Sigl, R. Schuhegger, A. Ihring, M. Schmid, S. Gantner, M. Stoffels, K. Riedel, M. Givskov, A. Hartmann, C. Langebartels, and L. Eberl. 2001. Visualization of Nacylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67: 5761-5770 https://doi.org/10.1128/AEM.67.12.5761-5770.2001
- Sy, A., A. C. J. Timmers, C. Knief, and J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71: 7245-7252 https://doi.org/10.1128/AEM.71.11.7245-7252.2005
- Sy, A., E. Girud, P. Jourand, N. Garcia, A. Willems, P. De Lajudie, Y. Prin, M. Neyra, M. Gills, B. M. Catherine, and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix atmospheric nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214-220 https://doi.org/10.1128/JB.183.1.214-220.2001
- Throup, J. P., M. Camara, G. S. Briggs, M. K. Winson, S. R. Chhabra, B. W. Bycroft, P. Williams, and G. S. A. B. Stewart. 1995. Characterization of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two Nacylhomoserine lactone signal molecules. Mol. Microbiol. 17: 345-356 https://doi.org/10.1111/j.1365-2958.1995.mmi_17020345.x
- Wagner-Döbler, I., V. Thiel, L. Eberl, M. Allgaier, A. Bodor, S. Meyer, S. Ebner, A. Hennig, R. Pukall, and S. Schulz. 2005. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host associated marine Alphaproteobacteria. Chembiochem 6: 2195-2206 https://doi.org/10.1002/cbic.200500189
- Whittenbury, R., S. L. Davies, and J. F. Wilkinson.1970. Enrichment, isolation and some properties of methaneutilizing bacteria. J. Gen. Microbiol. 61: 205-218 https://doi.org/10.1099/00221287-61-2-205
- Winson, M. K., M. Camara, A. Latifi, M. Foglino, S. R. Chhabra, M. Daykin, M. Bally, V. Chapon, G. P. C. Salmond, B. W. Bycroft, A. Lazdunski, G. S. A. B. Stewart, and P. Williams. 1995. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 9427-9431
- Wood, A. P., D. P. Kelly, I. R. McDonald, S. L. Jordan, T. D. Morgan, S. Khan, J. C. Murrell, and E. Borodina. 1998. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol. 169: 148-158 https://doi.org/10.1007/s002030050554