Production of Acyl-Homoserine Lactone Quorum-Sensing Signals is Wide-Spread in Gram-Negative Methylobacterium

  • Published : 2007.02.28

Abstract

Members of Methylobacterium, referred as pink-pigmented facultative methylotrophic bacteria, are frequently associated with terrestrial and aquatic plants, tending to form aggregates on the phyllosphere. We report here that the production of autoinducer molecules involved in the cell-to-cell signaling process, which is known as quorum sensing, is common among Methylobacterium species. Several strains of Methylobacterium were tested for their ability to produce N-acyl-homoserine lactone (AHL) signal molecules using different indicators. Most strains of Methylobacterium tested could elicit a positive response in Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. The synthesis of these compounds was cell-density dependent, and the maximal activity was reached during the late exponential to stationary phases. The bacterial extracts were separated by thin-layer chromatography and bioassayed with A. tumefaciens NTI (traR, tra::lacZ749). They revealed the production of various patterns of the signal molecules, which are strain dependent. At least two signal molecules could be detected in most of the strains tested, and comparison of their relative mobilities suggested that they are homologs of N-octanoyl-$_{DL}$-homoserine lactone ($C_8-HSL$) and N-decanoyl-$_{DL}$-homoserine lactone ($C_{10}-HSL$).

Keywords

References

  1. Bousfield, I. J. and P. N. Green. 1985. Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983. Int. J. Syst. Bacteriol. 35: 209 https://doi.org/10.1099/00207713-35-2-209
  2. Cha, C., P. Gao, Y. C. Chen, P. D. Shaw, and S. K. Farrand. 1998. Production of acyl-homoserine lactone quorumsensing signals by Gram-negative plant-associated bacteria. Mol. Plant-Microbe Interact. 11: 1119-1129 https://doi.org/10.1094/MPMI.1998.11.11.1119
  3. Chilton, M. D., T. C. Currier, S. K. Farrand, A. J. Bendich, M. P. Gordon, and E. W. Nester. 1974. Agrobacterium tumefaciens and P58 bacteriophage DNA not detected in crown gall tumour DNA. Proc. Natl. Acad. Sci. USA 71: 3672-3676
  4. Corpe, W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Methods 3: 215- 221 https://doi.org/10.1016/0167-7012(85)90049-1
  5. Dong, Y. H., J. L. Xu, X. Z. Li, and L. H. Zhang. 2001. Aii, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526-3531
  6. Doronina, N. V., Y. A. Trotsenko, B. B. Kuznetsov, T. P. Tourova, and M. S. Salkinoja-Salonen. 2002. Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. Int. J. Syst. Evol. Microbiol. 52: 773-776 https://doi.org/10.1099/ijs.0.02014-0
  7. Doronina, N. V., Y. A. Trotsenko, T. P. Tourova, B. B. Kuznetsov, and T. Leisinger. 2000. Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. - novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst. Appl. Microbiol. 23: 210-218 https://doi.org/10.1016/S0723-2020(00)80007-7
  8. Gallego, V., M. T. Garcia, and A. Ventosa. 2005. Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 55: 281-287 https://doi.org/10.1099/ijs.0.63319-0
  9. Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117 https://doi.org/10.1139/m95-015
  10. Green, P. N. and I. J. Bousfield. 1983. Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito & Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin & Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33: 875-877 https://doi.org/10.1099/00207713-33-4-875
  11. Green, P. N., I. J. Bousfield, and D. Hood. 1988. Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov. Int. J. Syst. Bacteriol. 38: 124-127 https://doi.org/10.1099/00207713-38-1-124
  12. Green, P. N. 1992. The genus Methylobacterium, pp. 2342- 2349. In Balows, A., Trüper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H. (eds.), The Prokaryotes, 2nd Ed., vol. III. Springer-Verlag, New York, U.S.A
  13. Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
  14. Lee, H. Y., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. B. Hoon, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
  15. Madhaiyan, M., S. Poonguzhali, J. H. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminasecontaining Methylobacterium fujisawaense. Planta 224: 268-278 https://doi.org/10.1007/s00425-005-0211-y
  16. Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, J. C. Yang, S. P. Sundaram, and T. M. Sa. 2004. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. 45: 315-324
  17. McClean, K. H., M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, M. Daykin, J. H. Lamb, S. Swift, B. W. Bycroft, G. S. A. B. Stewart, and P. Williams. 1997. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143: 3703-3711 https://doi.org/10.1099/00221287-143-12-3703
  18. McLean, R. J. C., L. S. Pierson, and C. Fuqua. 2004. A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods 58: 351-360 https://doi.org/10.1016/j.mimet.2004.04.016
  19. Miller, J. H. 1972. Assay of $\beta$-galactosidase, pp. 352-355. In: Experiments of Molecular Genetics. Cold Spring Harbour Laboratory Press, New York
  20. Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192
  21. Newton, J. A. and R. G. Fray. 2004. Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol. 6: 213- 224 https://doi.org/10.1111/j.1462-5822.2004.00362.x
  22. Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43: 93-96 https://doi.org/10.1023/B:GROW.0000038360.09079.ad
  23. Patt, T. E., G. C. Cole, and R. S. Hanson. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26: 226-229 https://doi.org/10.1099/00207713-26-2-226
  24. Penalver, C. G. N., D. Morin, F. Cantet, O. Saurel, A. Milon, and J. A. Vorholt. 2006. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580: 561-567 https://doi.org/10.1016/j.febslet.2005.12.062
  25. Piper, K. R., B. V. S. Bodman, and S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens Ti plasmid transfer by autoinduction. Nature 362: 448-450 https://doi.org/10.1038/362448a0
  26. Ravn, L., A. B. Christensen, S. Molin, M. Givskov, and L. Gram. 2001. Methods for identifying and quantifying acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J. Microbiol. Methods 44: 239-251 https://doi.org/10.1016/S0167-7012(01)00217-2
  27. Rosemeyer, V., J. Michiels, C. Verreth, and J. Vanderleyden. 1998. luxI and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol. 180: 815-821
  28. Ryu, J. H., M. Madhaiyan, S. Poonguzhali, W. J. Yim, P. Indiragandhi, K. A. Kim, R. Anandham, J. C. Yun, K. H. Kim, and T. M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622- 1628
  29. Shaw, P. D., G. Ping, S. L. Daly, C. Cha, J. E. Cronan, K. L. Rinehart, and S. K. Farrand. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94: 6036- 6041
  30. Steidle, A., K. Sigl, R. Schuhegger, A. Ihring, M. Schmid, S. Gantner, M. Stoffels, K. Riedel, M. Givskov, A. Hartmann, C. Langebartels, and L. Eberl. 2001. Visualization of Nacylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67: 5761-5770 https://doi.org/10.1128/AEM.67.12.5761-5770.2001
  31. Sy, A., A. C. J. Timmers, C. Knief, and J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71: 7245-7252 https://doi.org/10.1128/AEM.71.11.7245-7252.2005
  32. Sy, A., E. Girud, P. Jourand, N. Garcia, A. Willems, P. De Lajudie, Y. Prin, M. Neyra, M. Gills, B. M. Catherine, and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix atmospheric nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214-220 https://doi.org/10.1128/JB.183.1.214-220.2001
  33. Throup, J. P., M. Camara, G. S. Briggs, M. K. Winson, S. R. Chhabra, B. W. Bycroft, P. Williams, and G. S. A. B. Stewart. 1995. Characterization of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two Nacylhomoserine lactone signal molecules. Mol. Microbiol. 17: 345-356 https://doi.org/10.1111/j.1365-2958.1995.mmi_17020345.x
  34. Wagner-Döbler, I., V. Thiel, L. Eberl, M. Allgaier, A. Bodor, S. Meyer, S. Ebner, A. Hennig, R. Pukall, and S. Schulz. 2005. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host associated marine Alphaproteobacteria. Chembiochem 6: 2195-2206 https://doi.org/10.1002/cbic.200500189
  35. Whittenbury, R., S. L. Davies, and J. F. Wilkinson.1970. Enrichment, isolation and some properties of methaneutilizing bacteria. J. Gen. Microbiol. 61: 205-218 https://doi.org/10.1099/00221287-61-2-205
  36. Winson, M. K., M. Camara, A. Latifi, M. Foglino, S. R. Chhabra, M. Daykin, M. Bally, V. Chapon, G. P. C. Salmond, B. W. Bycroft, A. Lazdunski, G. S. A. B. Stewart, and P. Williams. 1995. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 9427-9431
  37. Wood, A. P., D. P. Kelly, I. R. McDonald, S. L. Jordan, T. D. Morgan, S. Khan, J. C. Murrell, and E. Borodina. 1998. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol. 169: 148-158 https://doi.org/10.1007/s002030050554