Genetic Diversity in Three Populations of Hibiscus hamabo(Malvaceae) in Jeju Island, Korea

제주도 황근(Hibiscus hamabo) 집단의 유전적 다양성

  • Published : 2007.06.30

Abstract

Using internal transcribed spacer (ITS) sequences and inter-simple sequence repeats (ISSRs) data, genetic diversity of a rare species, Hibiscus hamabo Siebold & Zucc. was examined for 3 populations in Jeju Island, Korea. A total of 14 nucleotide (excluding 3 ambiguous nucleotide) site variation in the ITS was observed from 18 individuals (Population 1, Hadori), which differed up to 13 bp in pair-wise comparison. On the contrary, the ITS sequences of all individuals in Populations 2 and 3 were identical. Genetic diversity estimates including Nei's gene diversity (h) generated by ISSR data were substantially high in Population 1 compared to other two populations. Low genetic variation in Populations 1 and 2 is considered due to genetic drift (bottleneck effect) and limited gene flow in these populations. Considering the differences in genetic diversity, protection of the Population 1(Hadori) is very critical for in situ conservation of Hibiscus hamabo in Korea. If ex situ conservation is required, making the full use of Population 1 will be most efficient.

제주도에 자생하는 희귀식물종인 황근(아욱과) 3개 집단을 대상으로 ITS 염기서열 변이와 ISSR 변이를 분석하는 방법으로 유전적 다양성을 조사하였다. 집단 1(북제주군 하도리 집단)에 포함된 18개체의 ITS 염기서열을 분석한 결과 총 14개 지점(다형 뉴클레오티드까지 포함하면 17개 지점)에서 뉴클레오티드 변이가 관측되었으며, 각 개체들은 최소 1개에서 최대 13개 뉴클레오티드 지점에서 염기서열의 차이를 보였다. 그러나 집단 2(남제주군 오조리 집단) 17개체와 집단 3(남제주군 세화리 집단) 17개체의 ITS 염기서열은 모두 동일한 것으로 확인되었다. ISSR 변이분석 방법에 의해 생산된 자료를 분석한 결과 역시, 집단 1이 집단 2와 3에 비해 상대적으로 더 높은 유전적 다양성 지표들을 나타내었다. 이와 같은 결과는 집단 2와 3의 형성 과정에서 극심한 유전적부동이 존재했었으며, 이후 인접 집단으로부터 이들 집단으로의 유전자 유입이 매우 제한적이었던 반면, 집단 1은 오랫동안 개체군이 안정적으로 유지되어왔기 때문으로 해석되었다. 우리나라에 자생하는 황근을 보존하기 위해서는 유전적 다양성이 월등히 더 높은 하도리 집단을 우선적으로 보존하는 것이 매우 중요하며, 만일 현지외 보존이 필요할 경우 하도리 집단에 포함된 개체를 집중적으로 활용하는 것이 더 효율적일 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. Andreasen, K. and B. Baldwin. 2001. Unequal evolutionary rates between annual and prerenial lineages of checker mallows (Sidalcea, Malvaceae): Evidence from 18S-26S rDNA internal and external transcribed spacers. Mol. Biol. Evol. 18:936-944 https://doi.org/10.1093/oxfordjournals.molbev.a003894
  2. Avise, J C. 1994. Molecular markers, natural history and evolution. Chapman and Hall, London
  3. Camacho, F. J and A. Liston. 2001. Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on inter-simple sequence repeats (ISSR). Amer. J. Bot. 88: 1065-1070 https://doi.org/10.2307/2657089
  4. Chung, J. M., B. C. Lee, J. S. Kim, C.-W. Park, M. Y Chung and M. G. Chung. 2006. Fine-scale genetic structure among genetic individuals of the clone-forming monotypic genus Echinosophora koreensis (Fabaceae). Annals of Botany 98:165-173 https://doi.org/10.1093/aob/mcl083
  5. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15
  6. Ge, xj, Y. Yu, Y.-M. Yuan, H.-W. Huang and C. Yan. 2005. Genetic diversity and geographic differentiation in endangered Ammopiptanihus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Ann. Bot. 95: 843-851 https://doi.org/10.1093/aob/mci089
  7. Hamrick J. L. and M. J. W. Godt. 1996. Conservation Genetics of Endemic Plant Species. In: Avise J. C; Hamrick J. L., eds. Conservation Genetics: Case Histories from Nature. New York: Chapman and Hall, pp 281-304
  8. Jousson, O., J. Pawlowski, L. Zaninetti, F. W. Zechman, F. Dini, G. Di Guiseppe, R. Woodfield, A. Millar and A. Meinesz. 2000. Invasive alga reaches California. Nature 408: 157-158 https://doi.org/10.1038/35041623
  9. Kim, Y.-D., S.-H. Kim and L. R. Landrum. 2004. Taxonomy and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae), J. Plant Res. 117:175-182
  10. Kim, Y.-D., C.-W. Park, B.-Y. Sun, K.- J. Kim, E.- J. Lee and S.- H. Kim. 2005. ITS sequence variations in common ragweed and giant ragweed. Korean J. PI.Taxon. 35: 273-285 (in Korean) https://doi.org/10.11110/kjpt.2005.35.4.273
  11. Kimura, M. 1980. A simple method for estimating evolutionary rate of the base substitution through comparative studies of nucleotide sequences.. J. Mol. Evol. 16: 111-120 https://doi.org/10.1007/BF01731581
  12. Milligan, B. G., J. Leebens-Mack and A. E. Strand. 1994. Conservation genetics: beyond the maintenance of marker diversity. Molecular Ecology 12: 844-855
  13. Nei, M. 1973. Analysis of gene diversity in subdivided population. Proc. Nat. Acad. Sci. USA 70: 3321-3323
  14. Palmer, J. D. 1986. Isolation and structural analysis of chloroplast DNA Meth. Enzymol. 118: 167-186 https://doi.org/10.1016/0076-6879(86)18072-4
  15. Schaal, B. A, D. A. Hayworth, K. M. Olsen, J. T. Rauscher and W. A. Smith. 1998. Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7:465-474 https://doi.org/10.1046/j.1365-294x.1998.00318.x
  16. Soltis P. S. and R. K. Kuzoff. 1993. ITS sequence variation within and among populations of Lomatium grayi and L. laevigatum (Umbelliferae). Mol. Phylogenet. Evol. 2:166-170 https://doi.org/10.1006/mpev.1993.1017
  17. Swofford, D. L. 2002. PAUP*, phylogenetic analysis using parsimony (*and other methods), version 4.0b. Sinauer, Sunderland
  18. Thompson, J. D., D. G. Higgins and T. J. Gibson. 1995. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  19. White, T. J., T. Birns, S. Lee and J. Taylor. 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications, Innis, M., D. Gelfand, J. Sninsky and T. White (eds.), Academic Press, San Diego, Pp, 315-322
  20. Yeh, F. C. R. C. Yang and T. Boyle. 1999. POPGENE. Microsoft Windows-based Freeware for Population Genetic Analysis. Release 1.31. Edmonton: University of Alberta, Canada
  21. Xiao, L.-Q., X.-J. Ge, X. Gong, G. Hao and S.-X. Zheng. 2004. ISSR variation in the endemic and endangered plant Cycas guizhouensis (Cycadaceae). Ann. Bot. 94:133-138 https://doi.org/10.1093/aob/mch119
  22. Xiao, M., Q. Li, L. Wang, L. Guo, J. Li, L. Tang and F. Chen. 2006. ISSR analysis of the genetic diversity of the endangered species Sinopodophyllum hexandrum (Royle) Ying from Western Sichuan Province, China. J. Integrative Plant Biology 48:1140-1146 https://doi.org/10.1111/j.1744-7909.2006.00304.x