DOI QR코드

DOI QR Code

Determination of Copper(II) ion with a nafion-ethylenediamine modified glassy carbon electrode

내피온-에틸렌디아민이 수식된 유리탄소전극으로 구리(II) 이온의 정량

  • Ko, Young Chun (Department of Nano-Chemical/Environmental Engineering, Daebul University) ;
  • Kim, Hee Cheol (Department of Chemistry, Graduate School, Chonnam National University)
  • 고영춘 (대불대학교 나노화학환경공학과) ;
  • 김희철 (전남대학교 대학원 화학과)
  • Received : 2007.04.16
  • Accepted : 2007.06.07
  • Published : 2007.06.28

Abstract

Copper(II) ion was measured with the use of a perfluorinated sulfonated polymer-ethylenediamine (nafion-en) modified glassy carbon electrode. The electrode mechanism was based on the chemical reactivity of an immobilized layer (nafion-en) to yield complex $[Cu(en)_2]^{+2}$. The reduction potential peak by differential pulse voltammetry(DPV) was observed at -0.4402V(${\pm}0.0050V$) (vs. Ag/AgCl). The linear calibration curve was obtained from $1.0{\times}10^{-6}$ to $1.0{\times}10^{-4}M$ copper(II) ion concentration, and the detection limit(3s) was $1.96{\times}10^{-6}M$.

Perfluorinated sulfonated polymer-ethylenediamine(nafion-en)이 수식된 유리탄소전극을 이용하여 Cu(II) 이온을 정량하였다. 이 수식전극의 en은 Cu(II) 이온과 $[Cu(en)_2]^{+2}$의 착물을 형성한다. Nafion-en이 수식된 유리탄소전극에서 시차펄스전압전류법에 의한 Cu(II) 이온의 환원봉우리전위는 -0.4402V(${\pm}0.0050V$) (vs. Ag/AgCl)에서 측정되었고, 측정범위는 $1.0{\times}10^{-6}{\sim}1.0{\times}10^{-4}M$, 검출한계(3s)는 $1.96{\times}10^{-6}M$이었다.

Keywords

References

  1. J. Wang,Stripping Analysis: Principles, Instrumentations and Applications, VCH Publishers, Deerfield Ceach, Weinheim, 1985
  2. M. Camptull, 'Sensor Systems for Environmental' Monitoring, Champman & Hall, 1987
  3. S. Dong and Y. Wang, Electroanalysis, 1, 99 (1989)
  4. H. -X. Zhang, A. -M. Cao, J. -S. Hu, L. -J. Wan, and S. -T. Lee, Anal. Chem. 78, 1967 (2006) https://doi.org/10.1021/ac051826s
  5. T. Inoue and J. R. Kirchhoff, Anal. Chem. 74, 1349 (2002)
  6. M. A. Rahman, M. -S. Won, and Y. -B. Shm, Anal. Chem. 75, 1123 (2003) https://doi.org/10.1021/ac0262917
  7. Y. C. Ko, J. A. Kim, and K. H. Chung, Anal. Sci. & Tech., 10, 427 (1997)
  8. R. P. Baldwin, J. K. Christensen, and L. Kryger, Anal. Chem., 58, 1790 (1986) https://doi.org/10.1021/ac00295a073
  9. T. Mutus, J. Fujihara, and Y. J. Osa, Electrochem. Soc., 129, 1681 (1981)
  10. L. A. Coury, Jr., E. M. Birch, and W. R. Heineman, Anal. Chem., 60, 553 (1988) https://doi.org/10.1021/ac00161a010
  11. K. N. Thomsen and R. P. Baldwin, Anal. Chem., 61, 2594 (1989) https://doi.org/10.1021/ac00192a738
  12. D. M. T. O'riordan and G. G. Wallace, Anal. Chem., 58, 128 (1986) https://doi.org/10.1021/ac00295a073
  13. G. T. Cheek and R. P. Nelson, Anal. Lett., 11, 393 (1978)
  14. Y. Shuxun, Microchem. J., 52, 216 (1995)
  15. S. B. Khoo, Electroanalysis, 74, 379 (1995)
  16. K. W. Kim, H. C. Kim, S.-H. Kim, B. H. Park, Y. H. Kim, K. N. Kim, and Y. C. Ko, J. Kor. Chem. Soc., 20, 115 (2003)
  17. W. Diewald, K. Kalcher, C. Neuhold, and R. J. Magee, Anal. Chim. Acta, 73, 237 (1993)