헤테로폴리산 촉매를 이용한 Tetrahydrodicyclopentadiene 및 Tetrahydrodi(methylcyclopentadiene)의 이성화반응 연구

Study on the Isomerization Reaction of Tetrahydrodicyclopentadiene, Tetrahydrodi(methylcyclopentadiene) Using Heteropolyacid Catalyst

  • Jeong, Byung Hun (Agency for Defense Development) ;
  • Han, Jeong Sik (Agency for Defense Development) ;
  • Kim, Seong Bo (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kang, Cheol Han (Department of Fine Chemical Engineering, Chung Nam National University) ;
  • Lee, Bum Jae (Department of Fine Chemical Engineering, Chung Nam National University)
  • 투고 : 2006.08.30
  • 심사 : 2006.11.23
  • 발행 : 2007.02.10

초록

헤테로폴리산 촉매를 이용하여 endo-tetrahydrodicyclopentadiene 및 endo-tetrahydrodi(methylcyclopentadiene)의 이성화반응에 관한 연구를 행하였다. 이성화반응에 의해 endo 형태를 exo 형태의 화합물로 제조하였다. 기존의 이성화촉매인 알루미늄 클로라이드의 문제점을 개선하기 위하여 헤테로폴리산의 적용을 시도하였다. Keggin 형태의 헤테로폴리산 촉매인 $H_3PW_{12}O_{40}$에서 수소원자 2.5개 대신에 cesium으로 치환시 촉매활성이 가장 높았다. Cesium으로 치환된 헤테로폴리산 촉매 사용시 기존의 알루미늄클로라이드 촉매보다 이성화반응속도가 빠른 것을 확인하였고, 반응온도, 시간에 따른 tetrahydrodicyclopentadiene 및 tetrahydrodi(methylcyclopentadiene)의 반응성을 비교하였다.

The study on the isomerization reaction of endo-tetrahydrodicyclopentadiene and endo-tetrahydrodi(methylcyclopentadiene) using heteropolyacid catalyst was carried out. Exo compound was prepared from endo compound through isomerization reaction. To improve the problem of aluminum chloride as an isomerization catalyst, application of heteropolyacid was attempted. In use of Keggin type heteropolyacid, catalytic activity was extremely high at cesium substitution instead of 2.5 hydrogen atoms of $H_3PW_{12}O_{40}$. Using the cesium substituted heteropolyacid, isomerization reaction rate was faster than aluminum chloride and the effect of reaction temperature and times on reactivities were compared in isomerization of tetrahydrodicyclopentadiene and tetrahydrodi(methylcyclopentadiene).

키워드

참고문헌

  1. J. F. Eijkman, Chem. Weekblad, 1, 7 (1903); 3, 685 (1906)
  2. H. Mark, F. Mcketta, and D. J. Pthmer, Kirkothmer Encyclopedia of Chemical Technology, 132, Jone Wiley & Sons, Inc., Newyork (1968)
  3. D. Skala and J. Hanika, Pet. & Coal, 45, 105 (2003)
  4. B. H. Jeong, J. S. Han, J. H. Lee, S. B. Kim, and B. J. Lee, Chem. Eng. Res., 43, 566 (2005)
  5. E. Xing, Z. Mi, C. Xin, L. Wang, and X. Zhang, J. Mol. Cat. A, 231, 161 (2005) https://doi.org/10.1016/j.molcata.2005.01.015
  6. P. V. R. Schleyer and M. M. Donaldson, J. Am. Chem. Soc., 82, 4645 (1960) https://doi.org/10.1021/ja01502a050
  7. Y.-M. Du, C.-Y. Li, and J. Lu, Chinese J. Explos. Propel., 28, 58 (2005)
  8. T. Okuhara, T. Nishimura, and M. Misono, Studies Surf. Sci. Cat., 101, 581 (1996)
  9. T. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, and M. Misono, Chem. Mater., 12, 2230 (2000) https://doi.org/10.1021/cm9907561
  10. M. Misono, Cat. Rev., 29, 269 (1987) https://doi.org/10.1080/01614948708078072
  11. N. Essayem, Y. Y. Tong, H. Jobic, and J. C. Vedrine, Appl. Cat. A, 194, 102 (2000)
  12. E. Xing, X. Zhang, L. Wang, and Z. Mi, Cat. Commun., 6, 73 (2005)