과제정보
연구 과제 주관 기관 : National Institute of Agricultural Biotechnology
참고문헌
- Acarkan, A., Rossberg, M., Koch, M., and Schmidt, R. (2000) Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. Plant J. 23, 55–62
- Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., et al. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815
- Bancroft, I. (2001) Duplicate and diverge: the evolution of plant genome microstructure. Trends Genet. 17, 89−93
- Blanc, G. and Wolfe, K. H. (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679–1691
- Bowers, J. E., Chapman, B. A., Rong, J., and Paterson, A. H. (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433−438 https://doi.org/10.1038/nature01506
- Cho, Y. G., Eun, M. Y., McCouch, S. R., and Chae, Y. A. (1994) The semidwarf gene, sd-1, of rice (Oryza sativa L.). II. Molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89, 54−59
- Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194
- Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185
- Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6−13
- Gebhardt, C., Walkemeier, B., Henselewski, H., Barakat, A., Delseny, M., et al. (2003) Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant J. 34, 529–541
- Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195– 202
- Grant, D., Cregan, P., and Shoemaker, R. C. (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 4168–4173
- Green, R. M. and Tobin, E. M. (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA 96, 4176–4179
- Hall, A. E., Fiebig, A., and Preuss, D. (2002) Beyond the Arabidopisis genome: opportunities for comparative genomics. Plant Physiol. 129, 1439−1447
- Kim, H. R., Yang, T. J., Kudna, D. A., and Wing, R. A. (2004) Construction and application of genomic DNA libraries; in Handbook of Plant Biotechnology, Christou, P. and Klee, H. (eds.), Vol. 1, pp. 71−80, Wiley, Chichester
- Kim, J. S., Chung, T. Y., King, G. J., Jin, M., Yang, T.-J., et al. (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174, 29−39
- Kowalski, S. D., Lan, T.-H., Feldmann, K. A., and Paterson A. H. (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138, 499–510
- Ku, H.-M., Vision, T., Liu, J., and Tanksley, S. D. (2000). Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97, 9121–9126
- Kumar, S., Tamura, K., and Nei, M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150−163
- Lim, K.-B., de Jong, H., Yang, T.-J., Park, J.-Y., Kwon, S.-J., et al. (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol. Cells 19, 436− 444
- Love, C. G., Batley, J., Lim, G., Robinson, A. J., Savage, D., et al. (2004) New computational tools for Brassica genome research. Comp. Funct. Genom. 5, 276–280
- Lukens, L., Zou, F., Lydiate, D., Parkin, I., and Osborn, T. (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164, 359–372
- Lysak, M. A., Koch, M. A., Pecinka, A., and Schubert, I. (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res. 15, 516−525
- Makino, S., Kiba, T., Imamura, A., Hanaki, N., Nakamura, A., et al. (2000) Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 41, 791−803
- Marra, M. A., Kucaba, T. A., Dietrich, N. L., Green, E. D., Brownstein, B., et al. (1997) High throughput fingerprint analysis of large-insert clones. Genome Res. 7, 1072−1084
- Matsushika, A., Makino, S., Kojima, M., and Mizuno, T. (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol. 41, 1002−1012
- Meinke, D. and Koornneef, M. (1997) Community standards for Arabidopsis genetics. Plant J. 12, 247−253
- Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., and Koornneef, M. (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662−682 https://doi.org/10.1126/science.282.5389.682
- Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., et al. (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell 2, 629–641
- Mizuno, T. (1998) His-Asp phosphotransfer signal transduction. J. Biochem. (Tokyo) 123, 555−563
- Mizuno, T. and Nakamichi, N. (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol. 46, 677−685
- Murakami, M., Ashikari, M., Miura, K., Yamashino, T., and Mizuno, T. (2003) The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol. 44, 1229−1236
- Murakami, M., Matsushika, A., Ashikari, M., Yamashino, T., and Mizuno, T. (2005) Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering time. Biosci. Biotechnol. Biochem. 69, 410−414
- O'Neill, C. M. and Bancroft, I. (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233−243
- Paterson, A. H., Bowers, J. E., Burow, M. D., Draye, X., Elsik, C. G., et al. (2000). Comparative genomics of plant chromosomes. Plant Cell 12, 1523–1540
- Paterson, A. H., Lan, T.-H., Amasino, R., Osborn, T. C., and Quiros, C. (2001) Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biol. 2, REVIEWS1011
- Rana, D., van den Boogaart, T., O'Neill, C. M., Hynes, L., Bent, E., et al. (2004). Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40, 725–733
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Habor, N.Y
- Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., et al. (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229
- Schmidt, R., Acarkan, A., and Boivin, K. (2001) Comparative structural genomics in the Brassicaceae family. Plant Phys. Biochem. 39, 253–262
- Schwartz, S., Zhang, Z., Frazer, K. A., Smit, A., Riemer, C., et al. (2000) PipMaker - a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586
- Somers, D. E., Webb, A. A. R., Pearson, M., and Kay, S. A. (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494
- Town, C. D., Cheung, F., Maiti, R., Crabtree, J., Haas, B. J., et al. (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348–1359
- Yang, Y.-W., Lai, K.-N., Tai, P.-Y., and Li, W.-H. (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J. Mol. Evol. 48, 597–604
- Yang, T.-J., Yu, Y., Frisch, D. A., Lee, S., Kim, H.-R., et al. (2004) Construction of various copy number plasmid vectors and their utility for genome sequencing. Genomics Inform. 2, 174–179
- Yang, T.-J., Kim, J.-S., Lim, K.-B., Kwon, S.-J., Kim, J.-A., et al. (2005) The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp. Funct. Genom. 6, 138−146
- Yang T.-J., Kim, J. S., Kwon, S.-J., Lim, K.-B., Choi, B.-S., et al. (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339–1347
- Zhu, H., Kim, D.-J., Baek, J.-M., Choi, H.-K., Ellis, L. C., et al. (2003). Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol. 131, 1018–1026