Pyrolysis Characteristics of Sawdust and Rice Husk

톱밥과 왕겨의 열분해 특성 연구

  • Park, Dong Kyoo (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 program)) ;
  • Seo, Myung Won (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 program)) ;
  • Goo, Jeong Hoi (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 program)) ;
  • Kim, Sang Done (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 program)) ;
  • Lee, See Hoon (Korea Institute of Energy Research) ;
  • Lee, Jae Goo (Korea Institute of Energy Research) ;
  • Song, Byung-Ho (Department of Chemical Engineering, Kunsan National University)
  • 박동규 (한국과학기술원 생명화학공학과(BK21 program)) ;
  • 서명원 (한국과학기술원 생명화학공학과(BK21 program)) ;
  • 구정회 (한국과학기술원 생명화학공학과(BK21 program)) ;
  • 김상돈 (한국과학기술원 생명화학공학과(BK21 program)) ;
  • 이시훈 (한국에너지기술연구원) ;
  • 이재구 (한국에너지기술연구원) ;
  • 송병호 (군산대학교 화학공학과)
  • Received : 2006.11.21
  • Accepted : 2007.08.01
  • Published : 2007.10.10

Abstract

Pyrolysis characteristics of sawdust and rice husk as biomass resources in a thermogravimetric analysis were determined. Experiments were carried out with a linear heating rate under inert atmosphere of $N_2$ gas. Pyrolysis of the biomass can be classified as a lower temperature reaction zone where the major component of holocellulose is thermally decomposed and a high temperature reaction zone where lignin is thermally decomposed. The obtained data was analyzed by the two-step consecutive reaction model. Activation energies of sawdust and rice husk are found to be respectively 82.5 kJ/mol and 85.1kJ/mol in the low temperature zone according to the first order reaction model and 19.7 kJ/mol, 22.0 kJ/mol in the high temperature zone according to the three-way transport model. The reaction rate constant with variation of heating rate can be well predicted by the kinetic compensation relation of Gaur-Reed.

톱밥 및 왕겨를 주 바이오매스 원으로 선정하여 열분해 특성을 고찰하였다. 열 중량 분석기를 이용하여 승온 속도를 달리하여 질소 분위기의 비등온 조건에서 열분해 분석을 수행하였다. 시료의 열분해 반응은 holocellulose가 주 열분해 대상인 저온 반응 영역과 lignin이 열분해 대상이 되는 고온 반응 영역으로 구분되며 이를 2단계 연속 반응 모델을 사용하여 해석하였다. 각 영역에 따라 1st order reaction model과 3-way transport model을 적용하여 톱밥 및 왕겨의 활성화 에너지를 저온 영역에서 82.5 kJ/mol, 85.1 kJ/mol 그리고 고온 영역에서 19.7 kJ/mol, 22.0 kJ/mol로 결정하였다. 승온 속도를 달리하여 결정된 반응 속도 상수는 Gaur-Reed의 제안 식에 따라 kinetic compensation relation을 통해 해석할 수 있었으며 이를 통해 임의의 승온 속도에서의 열분해 속도 상수를 잘 예측할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국에너지기술연구원(KIER)

References

  1. M. Ni, Dennis Y. C. Leung, Michael K. H. Leung, and K. Sumathy, Fuel Processing Technol., 86, 461 (2006)
  2. A. V. Bridgwater, Fuel, 74, 631 (1995) https://doi.org/10.1016/0016-2361(95)00046-8
  3. A. V. Bridgwater, Chem. Eng. J., 4056, 1 (2002)
  4. A. Demirbas, Energy Conv. Manage., 42, 1357 (2001) https://doi.org/10.1016/S0196-8904(00)00137-0
  5. M. E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H. L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H. O. Desseyn, C. R. Li, T. B, Tang, B. Roduit, J. Malek, and T. Mitsuhashi, Thermochimica Acta, 355, 125 (2000) https://doi.org/10.1016/S0040-6031(00)00443-3
  6. C. D. Doyle, J. Appl. Polym. Sci., 6, 639 (1962) https://doi.org/10.1002/app.1962.070062406
  7. A. W. Coats and J. P. Redfern, J. Polym. Sci., 3, 917 (1965) https://doi.org/10.1002/pol.1965.110031106
  8. J. Guo and A. C. Lua, Biomass Bioenergy, 20, 223 (2001) https://doi.org/10.1016/S0961-9534(00)00080-5
  9. J. J. M. Orfao and F. G. Martins, Thermochimica Acta, 390, 195 (2002) https://doi.org/10.1016/S0040-6031(02)00133-8
  10. L. T. Vlaev, I. G. Markovska, and L. A. Lynbchev, Thermochimica Acta, 406, 1 (2003) https://doi.org/10.1016/S0040-6031(03)00222-3
  11. S. Gaur and T. B. Reed, Biomass Bioenergy, 7, 61 (1994)
  12. K. Raveendran, A. Ganesh, and K. C. Khilar, Fuel, 75, 987 (1996)
  13. A. Demirbas, Energy Conv. Manage., 41, 633 (2000) https://doi.org/10.1016/S0196-8904(99)00130-2
  14. T. Cordero, J. M. Rodríguez-Maroto, J. Rodríguez-Mirasol, and J. J. Rodríguez, Thermochimica Acta, 164, 135 (1990)
  15. R. Bilbao, A. Millera, and J. Arauzo, Thermochimica Acta, 165, 103 (1990) https://doi.org/10.1016/0040-6031(90)80210-P
  16. T. Cordero, J. M. Rodríguez-Maroto, F. García, and J. J. Rodríguez, Thermochimica Acta, 191, 161 (1991)
  17. A. Sharma and T. R. Rao, Bioresource Technology, 67, 53 (1999)
  18. Kim, S. D., 석탄 에너지 변환 기술, 民音社, 39 (1986)