Expression, Characterization and Regulation of a Saccharomyces cerevisiae Monothiol Glutaredoxin (Grx6) Gene in Schizosaccharomyces pombe

  • Lee, Jae-Hoon (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University) ;
  • Kim, Kyunghoon (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University) ;
  • Park, Eun-Hee (College of Pharmacy, Sookmyung Women's University) ;
  • Ahn, Kisup (Department of Health and Environment, Baekseok College of Cultural Studies) ;
  • Lim, Chang-Jin (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University)
  • 투고 : 2007.01.16
  • 심사 : 2007.07.19
  • 발행 : 2007.12.31

초록

Glutaredoxins (Grxs), also known as thioltransferases (TTases), are thiol oxidoreductases that regulate cellular redox state in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, Grx1 and 2 are cytosolic dithiol Grxs, while Grx3, 4 and 5 are monothiol Grxs. A gene encoding a new monothiol Grx, Grx6, was cloned from the genomic DNA of S. cerevisiae by PCR. Its DNA sequence contains 1,080 bp, and encodes a putative protein of 203 amino acid residues containing Cys-Phe-Tyr-Ser at the active site. Grx6 is similar to other monothiol Grxs in the same organism and to Grx3 in the fission yeast Schizosaccharomyces pombe. and its predicted three-dimensional structure resembles that of S. pombe Grx3. S. pombe cells harboring plasmid pFGRX6 containing the Grx6 gene had about 1.3-fold elevated Grx activity in the exponential phase, and grew better than the control cells under some stressful conditions. Synthesis of ${\beta}$-galactosidase from a Grx6-lacZ fusion gene in S. pombe was enhanced by potassium chloride, aluminum chloride and heat ($37^{\circ}C$) treatment. S. pombe cells harboring plasmid pFGRX6 had elevated ROS levels whereas S. pombe cells harboring extra copies of Grx3 had reduced ROS levels.

키워드

과제정보

연구 과제 주관 기관 : Korea Science and Engineering Foundation

참고문헌

  1. Bandyopadhyay, S., Starke, D. W., Mieyal, J. J., and Gronostajski, R. M. (1998) Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I. J. Biol. Chem. 273, 392-397 https://doi.org/10.1074/jbc.273.1.392
  2. Belli, G., Polaina, J., Tamarit, J., De La Torre, M. A., Rodriguez- Manzaneque, M. T., et al. (2002) Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J. Biol. Chem. 277, 37590-37596 https://doi.org/10.1074/jbc.M201688200
  3. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cho, Y.-W., Kim, H.-G., Park, E.-H., Fuchs, J. A., and Lim, C.-J. (2000) Cloning, expression and regulation of Schizosaccharomyces pombe gene encoding thioltransferase. Biochim. Biophys. Acta 1517, 171-175 https://doi.org/10.1016/S0167-4781(00)00242-6
  5. Chung, W. H., Kim, K. D., and Roe, J. H. (2005) Localization and function of three monothiol glutaredoxins in Schizosaccharomyces pombe. Biochemical. Biophys. Res. Commun. 330, 604-610 https://doi.org/10.1016/j.bbrc.2005.02.183
  6. Collinson, E. J., Wheeler, G. L., Garrido, E. O., Avery, A. M., Avery, S. V., et al. (2002) The yeast glutaredoxins are active as glutathione peroxidases. J. Biol. Chem. 277, 16712-16727 https://doi.org/10.1074/jbc.M111686200
  7. Fernandes, A. P. and Holmgren, A. (2004) Glutaredoxins: glutathione- dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox Signal. 6, 63-74 https://doi.org/10.1089/152308604771978354
  8. Grant, C. M., Luikenhuis, S., Beckhouse, A., Soderbergh, M., and Dawes, I. W. (2000) Differential regulation of glutaredoxin gene expression in response to stress conditions in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1490, 33-42 https://doi.org/10.1016/S0167-4781(99)00234-1
  9. Guarente, L. (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181-191 https://doi.org/10.1016/0076-6879(83)01013-7
  10. Gutteridge, J. M. (1993). Anthracycline toxicity, iron and oxygen radicals, and chelation therapy. J. Lab. Clin. Med. 122, 228-229
  11. Hirota, K., Matsui, M., Murata, M., Takashima, Y., Cheng, F. S., et al. (2000) Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem. Biophys. Res. Commun. 274, 177-182 https://doi.org/10.1006/bbrc.2000.3106
  12. Holmgren, A. (1979) Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin. J. Biol. Chem. 254, 3672-3678
  13. Kim, H.-G., Park, E.-H., and Lim, C.-J. (1998) Thioltransferase from Schizosaccharomyces pombe: purification to homogeneity and some properties. Mol. Cells 8, 431-437
  14. Kim, H.-G., Park, E.-H., and Lim, C.-J. (2005a) The fission yeast encoding monothiol glutaredoxin 5 is regulated by nitrosative and osmotic stresses. Mol. Cells 20, 43-50
  15. Kim, H.-G., Kim, B.-C., Park, E.-H., and Lim, C.-J. (2005b) Stress-dependent regulation of a monothiol glutaredoxin gene from Schizosaccharomyces pombe. Can. J. Microbiol. 51, 613-620 https://doi.org/10.1139/w05-034
  16. Kim, H.-G., Kim, J.-H., Kim, B.-C., Park, E.-H., and Lim, C.-J. (2005c) Carbon source-dependent regulation of a second gene encoding glutaredoxin from the fission yeast Schizosaccharomyces pombe. Mol. Biol. Rep. 32, 15-24 https://doi.org/10.1007/s11033-004-3213-0
  17. Lim, C.-J., Cho, Y.-W., Hong, S.-M., Lim, H.-W., and Park E.-H. (2003) The thioltransferase (glutaredoxin) 1 gene of fission yeast is regulated by Atf1 and Pap1. Mol. Cells 16, 123-127
  18. Lopreiato, R., Facchin, S., Sartori, G., Arrigoni, G., Casonato, S., et al. (2004) Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem. J. 377, 395-405 https://doi.org/10.1042/BJ20030638
  19. Luikenhuis, S., Perrone, G., Dawes, I. W., and Grant, C. M. (1998) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol. Biol. Cell 9, 1081-1091 https://doi.org/10.1091/mbc.9.5.1081
  20. Moon, J. S., Lim, H.-W., Park, E.-H., and Lim, C.-J. (2005) Characterization and regulation of the gene encoding monothiol glutaredoxin 3 in the fission yeast Schizosaccharomyces pombe. Mol. Cells 20, 74-82
  21. Nordberg, J. and Arner, E. S. (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Rad. Biol. Med. 31, 1287-1312 https://doi.org/10.1016/S0891-5849(01)00724-9
  22. Myers, A. M., Tzagoloff, A., Kinney, D. M., and Lusty, C. J. (1986) Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299-310 https://doi.org/10.1016/0378-1119(86)90028-4
  23. Pedrajas, J. R., Porras, P., Martinez-Galisteo, E., Padilla. C. A., Miranda-Vizuete, A., et al. (2002) Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments. Biochem. J. 364, 617-623 https://doi.org/10.1042/BJ20020570
  24. Rietsch, A. and Beckwith, J. (1998) The genetics of disulfide bond metabolism. Annu. Rev. Genet. 32, 163-184 https://doi.org/10.1146/annurev.genet.32.1.163
  25. Rodriguez-Manzaneque, M. T., Ros, J., Cabiscol, E., Sorribas, A., and Herrero, E. (1999) Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8180-8190 https://doi.org/10.1128/MCB.19.12.8180
  26. Rodriguez-Manzaneque, M. T., Tamarit, J., Belli, G., Ros, J., and Herrero, E. (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 13, 1109-1121 https://doi.org/10.1091/mbc.01-10-0517
  27. Royall, J. A. and Ischiropoulos, H. (1993) Evaluation of 2',7'- dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_{2}O_{2}$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355 https://doi.org/10.1006/abbi.1993.1222
  28. Shenton, D., Perrone, G., Quinn, K. A., Dawes, I. W., and Grant, C. M. (2002) Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 277, 16853-16859 https://doi.org/10.1074/jbc.M200559200
  29. Tamarit, J., Belli, G., Cabiscol, E., Herrero, E., and Ros, J. (2003) Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J. Biol. Chem. 278, 25745-25751 https://doi.org/10.1074/jbc.M303477200