Development of Membrane Filter with Nanostructured Porous Layer by Coating Metal Nanoparticles onto a Micor-Filter

마이크로-필터 상에 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발

  • Lee, Dong Geun (Department of Mechanical Engineering, Chungnam National University) ;
  • Park, Seok Joo (Zero Emission Research Center, Korea Institute of Energy Research) ;
  • Park, Young Ok (Zero Emission Research Center, Korea Institute of Energy Research) ;
  • Ryu, Jeong In (Department of Mechanical Engineering, Chungnam National University)
  • 이동근 (충남대학교 기계공학과) ;
  • 박석주 (한국에너지기술연구원 제로에미션연구센터) ;
  • 박영옥 (한국에너지기술연구원 제로에미션연구센터) ;
  • 류정인 (충남대학교 기계공학과)
  • Received : 2007.06.18
  • Accepted : 2007.07.20
  • Published : 2007.12.31

Abstract

The membrane filter coated with nanostructured porous surface layer was made by heat treatment after depositing nanoparticles onto a conventional micron-fibrous metal filter as a substrate filter. The nanostructured porous layer membrane filter (NSPL-MF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by coating the nanoparticle agglomerates of dendrite structure onto the micron-fibrous metal filter. Pressure drop of nanostructured porous layer membrane filter decreased with increasing the heat treatment temperature to make the nanostructured porous layer adhered on the filter surface because the nanoparticle agglomerates shrank, but filtration efficiency did not decrease clearly.

기존 마이크론 금속섬유 필터를 지지체로 그 표면 위에 나노입자 증착 후, 열처리를 하여 나노구조 기공층이 표면에 부착 형성된 멤브레인 필터를 제작하였다. 가지상 구조의 나노입자 응집체를 마이크론 금속섬유 필터상에 부착함으로써 기존 금속 멤브레인 필터에 비하여 여과성능이 향상된 나노구조 기공층 멤브레인 필터를 개발하였다. 증착한 나노구조 기공층을 지지체 필터 표면상에 부착시키기 위한 열처리 온도가 증가함에 따라 나노입자 응집체의 수축 현상으로 인하여 나노구조 기공층 멤브레인 필터의 차압은 감소하였지만, 여과효율의 감소는 미미하였다.

Keywords

References

  1. Cao, G., 'Nanosturctures and Nanomaterials,' Imperial College Press(2004)
  2. Subramania, G., Constant, K., Biswas, R., Sigalas, M. M. and Ho, K. M., 'Optical Photonic Crystals Synthesized from Colloidal Systems of Polystyrene Spheres and Namocrystalline Titania,' J. Lightwave Tech., 17(11), 1970-1974(1999) https://doi.org/10.1109/50.802982
  3. Steigerwald, M. L, Alivisatos. A. P., Gibson, J. M., Harris, T. D., Kortan, R,. Muller, A. J. and Thayer, A. M., 'Surface Derivatization and Isolation of Semiconductor Cluster Molecules,' J. Am. Chem. Soc. 110(10), 3046-3050(1988) https://doi.org/10.1021/ja00218a008
  4. Houriet, R., Vacassy, R., Hofmann, H., Von Kaenel, Y. and Hofmeister, W., 'Formation of a Novel Carbon Microstucture Using Laser Atomization: Carbon Nanocurls,' Carbon, 39(9), 1425-1429(2001) https://doi.org/10.1016/S0008-6223(01)00087-2
  5. Houriet, R., Vacassy, R., Hofmann, H. and Vogel, W., 'Thin Film Growth Using Ablation of Ceramics with a Lina-Spark Atomizer', Mater. Res. Soc. Symp. Proc., 526, 117-122(1998)
  6. Houriet, R., Vacassy, R. and Hofmann, H., 'Synthesis of Powders and Films Using a New Laser Ablation Technique,' Nano. Str. Mater., 11(8), 1155-1163(1999) https://doi.org/10.1016/S0965-9773(99)00406-7
  7. Megaridis, C. M. and Dobbins, R. A., 'Morphological Description of Flame-generated Materials', R. A. Combust. Sci. and Tech., 71(1-3), 95-109 (1990) https://doi.org/10.1080/00102209008951621
  8. Hinds, W. C., 'Aerosol Technology; Properties, Behavior, and Measurement of Airborne Particle,' New York: John Wiley & Sone (1982)