Molecular Characterization of the Soybean L-Asparaginase Gene Induced by Low Temperature Stress

  • Cho, Chang-Woo (Department of Genetic Engineering, Dong-A University) ;
  • Lee, Hye-Jeong (Department of Genetic Engineering, Dong-A University) ;
  • Chung, Eunsook (Department of Genetic Engineering, Dong-A University) ;
  • Kim, Kyoung Mi (Department of Genetic Engineering, Dong-A University) ;
  • Heo, Jee Eun (Department of Genetic Engineering, Dong-A University) ;
  • Kim, Jung-In (School of Food and Life Science, Biohealth Products Research Center, Inje University) ;
  • Chung, Jongil (Department of Agronomy, Gyeongsang National University) ;
  • Ma, Youzhi (Institutes of Crop Breeding and Cultivation, China Academy of Agriculture Sciences) ;
  • Fukui, Kiichi (Department of Biotechnology, Graduate School of Engineering, Osaka University) ;
  • Lee, Dae-Won (Department of life Science, Dongguk University) ;
  • Kim, Doh-Hoon (Department of Genetic Engineering, Dong-A University) ;
  • Chung, Young-Soo (Department of Genetic Engineering, Dong-A University) ;
  • Lee, Jai-Heon (Department of Genetic Engineering, Dong-A University)
  • Received : 2006.11.30
  • Accepted : 2007.02.20
  • Published : 2007.06.30

Abstract

L-asparaginase (EC 3.5.1.1) catalyzes the hydrolysis of the amide group of L-asparagine, releasing aspartate and $NH_4{^+}$. We isolated a low temperature-inducible cDNA sequence encoding L-asparaginase from soybean leaves. The full-length L-asparaginase cDNA, designated GmASP1, contains an open reading frame of 1,258 bp coding for a protein of 326 amino acids. Genomic DNA blotting and fluorescence in situ hybridization showed that the soybean genome has two copies of GmASP1. GmASP1 mRNA was induced by low temperature, ABA and NaCl, but not by heat shock or drought stress. E. coli cells expressing recombinant GmASP1 had 3-fold increased L-asparaginase activity. A possible function of L-asparaginase in the early response to low temperature stress is discussed.

Keywords

Acknowledgement

Supported by : Dong-A University in Korea

References

  1. Atkins, C. A., Pate J. S., and Sarkey, P. J. (1975) Asparagine metabolism - key to nitrogen nutrition of developing legume seeds. Plant Physiol. 56, 807-812 https://doi.org/10.1104/pp.56.6.807
  2. Boos, J., Werber, G., Ahlke, E., Schulze-Westhoff, P., Nowak-Gottl, U., et al. (1996) Monitoring of asparaginase activity and asparagine levels in children on different asparaginase preparations. Eur. J. Cancer 32A, 1544-1550
  3. Bruneau, L., Chapman, R., and Marsolais, F. (2006) Co-occurrence of both L-asparaginase subtypes in Arabidopsis: At3g16150 encodes a $K^+$-dependent L-asparaginase. Planta 224, 668-679 https://doi.org/10.1007/s00425-006-0245-9
  4. Chang, K. S. and Farnden, K. J. F. (1981) Purification and properties of asparaginase from lupinus arboreus and lupinus angustifolius. Arch. Biochem. Biophys. 208, 49-58 https://doi.org/10.1016/0003-9861(81)90122-3
  5. Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991-1995
  6. Fawcett, J. K. and Scott, J. E. (1960) A rapid and precise method for the determination of urea. J. Clin. Pathol. 13, 156-159 https://doi.org/10.1136/jcp.13.2.156
  7. Fukui, K. and Iijima, K. (1991) Somatic chromosome map of rice by imaging methods. Theor. Appl. Genet. 81, 89-96
  8. Grant, M. and Bevan, M. W. (1994) Asparaginase gene expression is regulated in a complex spatial and temporal pattern in nitrogen-sink tissues. Plant J. 5, 695-704 https://doi.org/10.1111/j.1365-313X.1994.00695.x
  9. Lea, P. J. and Miflin, B, J. (1980) Transport and metabolism of asparagine and other nitrogen compounds within the plant; in The Biochemistry of Plants, Stumpt, P. K. and Conn, E. E. (eds.), Vol. 5, pp. 569-607, Academic Press, New York
  10. Lea, P. J., Fowden, L., and Miflin, B, J. (1978) The purification and properties of asparaginase from Lupinus species. Phytochemistry 17, 217-222 https://doi.org/10.1016/S0031-9422(00)94149-9
  11. Lee, S.-C., Lee, M.-Y., Kim, S.-J., Jun, S.-H., An, G., et al. (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.) Mol. Cells 19, 212-218
  12. Lough, T. J., Chang, K. S., Carne, A., Monk, B, C., Reynolds, P, H, S., et al. (1992) L-asparaginase from developing seeds of lupinus arboreus. Phytochemistry 31, 1519-1527 https://doi.org/10.1016/0031-9422(92)83098-J
  13. Michalska, K., Bujacz, G., and Jaskolski, M. (2006) Crystal structure of plant asparaginase. J. Mol. Biol. 306, 105-116
  14. Schubert, K, R. (1986) Product of biological nitrogen fixation in higher plants: synthesis, transport and metabolism. Ann. Rev. Plant Physiol. 37, 539-574 https://doi.org/10.1146/annurev.pp.37.060186.002543
  15. Scott, D. B., Farnden, K. J. F., and Robertson, J. G. (1976) Ammonia assimilation in lupin nodules. Nature 263, 703-705 https://doi.org/10.1038/263703a0
  16. Shure, M., Wessler, S., and Fedoroff, N. (1983) Molecular identification and isolation of Waxy locus in maize. Cell 35, 225-233 https://doi.org/10.1016/0092-8674(83)90225-8
  17. Sieciechowicz, K. A., Ireland, R. J., and Joy, K. W. (1985) Diurnal variation of asparaginase in developing pea leaves. Plant Physiol. 77, 506-508 https://doi.org/10.1104/pp.77.2.506
  18. Sieciechowicz, K. A., Ireland, R. J., and Joy, K. W. (1988a) Diurnal changes in asparaginase activity in pea leaves. II. Regulation of activity. J. Exp. Bot. 39, 707-721 https://doi.org/10.1093/jxb/39.6.707
  19. Sieciechowicz, K. A., Joy, K. W., and Ireland, R. J. (1988b) Diurnal changes in asparaginase activity in pea leaves. I. The requirement for light for increased activity. J. Exp. Bot. 39, 695-706 https://doi.org/10.1093/jxb/39.6.695
  20. Sieciechowicz, K. A., Joy, K. W., and Ireland, R. J. (1988c) The metabolism of asparagine in plants. Phytochemistry 27, 663-671 https://doi.org/10.1016/0031-9422(88)84071-8
  21. Soares, A, L., Guimaraes, G. M., Polakiewicz, B., de Moraes Pitombo, R. N., and Abrahao-Neto, J. (2002) Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-asparaginase. Int. J. Pharm. 237, 163-170 https://doi.org/10.1016/S0378-5173(02)00046-7
  22. Sodek, L. and Lea, P. J. (1993) Asparaginase from the testa of developing lupin and pea seeds. Phytochemistry 34, 51-56 https://doi.org/10.1016/S0031-9422(00)90781-7
  23. Sodek, L., Lea, P. J., and Miflin, D. J. (1980) Distribution and properties of a potassium-dependent asparaginase isolated from developing seeds of Pisum sativum and other plants. Plant Physiol. 65, 22-26 https://doi.org/10.1104/pp.65.1.22
  24. Streeter, J. G. (1977) Asparaginase and asparagine transaminase in soybean leaves and root nodules. Plant Physiol. 60, 235-239 https://doi.org/10.1104/pp.60.2.235
  25. Takahashi, R. and Shimosaka, E. (1997) cDNA sequence analysis and expression of two cold-regulated genes in soybean. Plant Sci. 123, 93-104 https://doi.org/10.1016/S0168-9452(96)04568-2
  26. Thompson, J. D., Plewniak, F., Thierry, J., and Poch, O. (2000) DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res. 28, 2919-2926 https://doi.org/10.1093/nar/28.15.2919
  27. Tonin, G. S. and Sodek, L. (1990) Asparaginase, allantoinase and glutamine synthetase activities in soybean cotyledons grown in vitro. Phytochemistry 29, 2829-2831 https://doi.org/10.1016/0031-9422(90)87085-9
  28. Verwoerd, T. C., Dekker, B. M., and Hoekema, A. (1989) A small-scale procedure for rapid isolation of plant RNAs. Nucleic Acids Res. 17, 2362