NPK 비료 생산을 위한 6구역 모사이동층의 공정모사

Simulation of a Six-zone Simulated Moving Bed Chromatographic Process for NPK Fertilizer Production

  • 임영일 (한경대학교 화학공학과 FACS 연구실) ;
  • 이아란 (한경대학교 화학공학과 FACS 연구실)
  • Lim, Youngil (FACS Lab., Dept. Chemical Engineering, Hankyong National University) ;
  • Lee, Aran (FACS Lab., Dept. Chemical Engineering, Hankyong National University)
  • 투고 : 2006.09.01
  • 심사 : 2006.11.02
  • 발행 : 2007.02.28

초록

본 연구는 NPK(질소-인-칼슘) 비료 생산을 위하여 강양이온 이온교환수지를 사용하는 모사이동층(SMB; simulated moving bed) 흡착 공정의 모델링과 모사에 관하여 다룬다. 이 공정은 생산부와 재생부로 크게 나뉘며, 원하지 않는 이온을 제외시키기 위한 2개의 세척 구역을 포함하여 6개의 구역으로 구성되어있다. 따라서 전통적인 4구역 모사이동층 공정보다 좀 더 복잡한 운전 조건을 갖는다. 이러한 6구역 모사이동층 공정의 모델링과 모사를 통하여 얻은 결과는 파일럿규모의 공정과 상용화 공정에서 얻은 실험 결과와 유사함을 보여주었다. 실험 결과로부터 확인된 이 모델식은 최적 운전 조건을 얻기 위한 최적화 문제에 적용될 수 있을 것이다.

Using strong cation exchange simulated moving bed (SMB) chromatography, a nitrogen-phosphate-potassium (NPK) fertilizer is produced in a cost-effective manner. The SMB process operated in a non-traditional way is divided into production and regeneration sections for exclusion of undesirable ions, and composed of six zones including two wash-water zones. This paper addresses modeling and simulation studies on the ion-exchange SMB process, comparing simulation results with experimental data obtained both from a pilot plant and an industrial plant. The simulation results show a good agreement with in situ experimental data obtained in the two plants. The model equation validated by the experiments will be applicable for optimization problems to obtain optimum operating conditions of the process.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥원(Korea Research Foundation: KRF)

참고문헌

  1. Altenhoner, U. Meurer, M. Strube, J. and Schmidt-Traub, H., 'Parameter Estimation for the Simulation of Liquid Chromatography,' J. Chromatogr. A, 769, 59-69(1997) https://doi.org/10.1016/S0021-9673(97)00173-8
  2. Beste, Y. A. Lisso, M. Wozny, G. and Arlt, W., 'Optimization of Simulated Moving Bed Plants with Low Efficient Stationary Phases: Separation of Fructose and Glucose,' J. Chromatogr. A, 868, 169- 188(2000) https://doi.org/10.1016/S0021-9673(99)01136-X
  3. Chang, S. C., 'The Method of Space?time Conservation Element and Solution Element - A New Approach for Solving the Navier -Stokes and Euler Equations,' J. Comput. Phys., 119, 295- 324(1995) https://doi.org/10.1006/jcph.1995.1137
  4. Chung, S. F. and Wen, C. Y., 'Longitudinal Dispersion of Liquid Flowing Through Fixed and Fluidized Beds,' AIChE J., 14(6), 857-866(1968) https://doi.org/10.1002/aic.690140608
  5. Kataoka, T. and Yoshida, H., 'Estimation Equation of Resin Phase Self Diffusivity,' J. Chem. Eng. Jap., 9(1), 74-75(1976) https://doi.org/10.1252/jcej.9.1
  6. Kim, Y. D., Lee, J. K. and Cho, Y. S., 'The Application of Simulated Moving Bed Chromatography for the Separation Between 2,6-and 2,7-Dimethylnaphthalene,' Kor. J. Che. Eng., 18(6), 971- 976(2001) https://doi.org/10.1007/BF02707191
  7. Klatt, K.-U., Dunnebier, G., Hanisch, F. and Engell, S., 'Optimal Operation and Control of Simulated Moving Bed Chromatography: A Model-based Approach,' AIChE symposium series 326, 98, 239-254(2002)
  8. Knudsen, K. C., 'The Production of NPK Fertilizers by Ionexchange,' J. Appl. Chem. Biotechnol., 24, 701-708(1974) https://doi.org/10.1002/jctb.5020240102
  9. Le Van, M. D., Carta, G. and Yon, C. M., Perry's chemical engineering handbook, 7th ed. Ch. 16(16-23), MeGraw-Hill, New York (1997)
  10. Lim, Y. I., 'An Optimization Strategy for Nonlinear Simulated Moving Bed Chromatography: Multi-level Optimization Procedure (MLOP),' Kor. J. Che. Eng., 21(4), 836-852(2004) https://doi.org/10.1007/BF02705373
  11. Lim, Y. I., Chang, C. S. and Jorgensen, S. B., 'A Novel Partial Differential Algebraic Equation (PDAE) Solver: Iterative Conservation Element/solution Element (CE/SE) Method,' Comp. Chem. Eng., 28(8), 1309-1324(2004) https://doi.org/10.1016/j.compchemeng.2003.09.016
  12. Lim, Y. I. and Jorgensen, S. B., 'A Fast and Accurate Numerical Method for Solving Simulated Moving Bed (SMB) Chromatographic Separation Problems,' Chem. Eng. Sci., 59(10), 1931-1947 (2004) https://doi.org/10.1016/j.ces.2003.12.026
  13. Ma, Z. and Wang, N.-H. L., 'Standing Wave Analysis of SMB Chromatography: Linear systems,'AIChE J., 40(10), 2488-2508(1997)
  14. Mackenzie, J. A. and Robertson, M. L., 'The Numerical Solution of One-Dimensional Phase Change Problems Using an Adaptive Moving Mesh Method,' J. Comput. Phys., 161(2), 537-557(2000) https://doi.org/10.1006/jcph.2000.6425
  15. Marcussen, L., Superfos-DTU internal report, Dept. Chem. Eng., DTU, Denmark(1985)
  16. Mazzotti, M., Storti, G. and Morbidelli, M., 'Optimal Operation of Simulated Moving Bed Units for Nonlinear Chromatographic Separations,' J. Chromatogr. A, 769, 3-24(1997) https://doi.org/10.1016/S0021-9673(97)00048-4
  17. Ruthven, D. M. and Ching, C. B., 'Counter-current and Simulated Counter-current Adsorption Separation Processes,' Chem. Eng. Sci., 44(5), 1011-1038(1989) https://doi.org/10.1016/0009-2509(89)85226-1
  18. Wakao, N. and Funazkri, T., 'Effect of Fluid Dispersion Coefficients on Particle-to-fluid Mass Transfer Coefficients in Packed Beds,' Chem. Eng. Sci., 33, 1375-1384(1978) https://doi.org/10.1016/0009-2509(78)85120-3