• Title/Summary/Keyword: NPK Fertilizer Production

Search Result 46, Processing Time 0.025 seconds

Simulation of a Six-zone Simulated Moving Bed Chromatographic Process for NPK Fertilizer Production (NPK 비료 생산을 위한 6구역 모사이동층의 공정모사)

  • Lim, Youngil;Lee, Aran
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Using strong cation exchange simulated moving bed (SMB) chromatography, a nitrogen-phosphate-potassium (NPK) fertilizer is produced in a cost-effective manner. The SMB process operated in a non-traditional way is divided into production and regeneration sections for exclusion of undesirable ions, and composed of six zones including two wash-water zones. This paper addresses modeling and simulation studies on the ion-exchange SMB process, comparing simulation results with experimental data obtained both from a pilot plant and an industrial plant. The simulation results show a good agreement with in situ experimental data obtained in the two plants. The model equation validated by the experiments will be applicable for optimization problems to obtain optimum operating conditions of the process.

Long-term Application Effect of Silicate Fertilizer on Soil Silicate Storage and Rice Yield

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.819-825
    • /
    • 2016
  • Monitoring of soil fertility and crop productivity in long-term application of silicate fertilizers is necessary to use fertilizers efficiently. This study was conducted to investigate effects of continuous application of silicate fertilizer for rice cultivation from 1969 to 2014. The treatments were no silicate fertilizer treatments (N, NC, NPK, and NPKC) and silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S). The 46-yr input of $2\;ton\;ha^{-1}yr^{-1}$ of silicate fertilizer increased pH 0.6 ~ 1.1 and exchangeable Ca $2.0{\sim}2.4cmol_c\;kg^{-1}$ in silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) compared with no silicate fertilizer treatments (N, NC, NPK, and NPKC) because silicate fertilizer included Ca component. Also, available silicate concentrations of silicate fertilizer treatments (N+S, NC+S, NPK+S, and NPKC+S) increased $169mg\;kg^{-1}$ compared to no silicate fertilizer treatments. In Period II ('90~'14), the mean annual Si field balance varied from 62 to $175kg\;ha^{-1}yr^{-1}$ in silicate fertilizer treatments, indicating continuous accumulation of soil Si. Silicon uptake and grain yield of rice had greater differences between N treatment and N+S treatment than other treatments. This showed that the application of silicate fertilizer had greater effect in nutrient-poor soils than in proper nutrient soils. Thus the application of silicate fertilizer led to improvement the fertility of soil and increasement of rice production for the lack of soil nutrients.

Influence of Different Fertilizer Management on Forage Production and Botanical composition (초지에서 시비관리의 차이가 사초생산과 식생에 미치는 영향)

  • 류종원;헬무트야콥
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 1998
  • The effects of different fertilizer management on herbage production and botanical composition were determined. Field experiments were conducted during 1991 - 1993 on sandy loam soil at Allgiu south western Germany under variabling fertilizer management; cattle slurry, NPK, PK chemical fertilizer management and zero fertilization. The dry matter yield of forage was the highest in the plot of mineral fertilizer and lowest in the plot of without fertilization. The dry matter yield of P-K application was higher by 1.2 ton than that of without fertilization. The content of crude protein, crude fibre, digestible dry matter yield, net energy and nitrogen content of plants was not significantly different among different fertilizer management. N uptake of plants was in the order NPK chemical fertilizer (347kg N/ha) > cattle slurry (337kg N/ha) > P-K chemical fertilizer (325kg N/ha) > without fertilization (3 15kg N/ha).

  • PDF

Production of Pellet Fertilizer from the Sludge of Thermophilic Aerobic Oxidation System End Its Effects on the Growth of Chinese cabbage and Soil Properties (고온 호기성 산화 시스템의 슬러지로부터 펠렛 비료의 생산과 Chinese cabbage의 생육 및 토양 특성에 대한 영향)

  • Lee Won Il;Hirotada Tsujii;Lee Myung Gyu
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.101-110
    • /
    • 2004
  • A solid of Thermophilic Aerobic Oxidation(TAO) System was mixed with sawdust or a rice husks. After fermentation was finished, molding machine and a dryer were used, and pellet fertilizer was produced. The fertilizing experiment was carried out as five pieces by Bed soil, TAO solid(TAO-S), TAO pellet fertilizer(TAO-PF), Chemical fertilizer(NPK) and Control(no fertilizer). Growth rate of the Chinese cabbage by each treatment was examined. Analysis of microbe and soil characteristic before and after crop experiment were carried out. When the moisture contents of TAO-PF were $18\%$ and $25\%$, the occurrence rate of microbes for the storage time was increased to $80\%$ and $100\%$ respectively. However, in the $12\%$ of water content treatment was not increased microbes. The concentration of soil bacteria in TAO-PF and TAO-S for 15 day after treatment was $1.5\times10^7\~8.0\times10^7$ CFU/ml, and the concentration of bacteria for 50 day was increased to $6.3\times10^7$ and $8.3\times10^7$ CFU/ml. However, Fungus decreased. The concentration of Actinomycetes was increased in TAO solid, Bed soil and TAO-PF treatment. The TAO-S and TAO-PF treatment were normal to compare to the NPK treatment. In this experiment the height and width of the Chinese cabbage were 22.3 cm, 16.8 cm in Bed soil and 28.8 cm, 21.3 cm in TAO solid. The leaf number of TAO-S, TAO-PF and NPK treatment were similar to 39.8, 38.3, 40.3 sheet. As the result, the TAO-PF knew that use was possible with fertilizer.

  • PDF

Effects of Lime Applications on Chemical Properties of Soil and Rice Yields in Long-term Fertilization Experiment

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.233-239
    • /
    • 2015
  • Monitoring of soil fertility and crop productivity in long-term application of fertilizers is necessary to use fertilizers efficiently. This study was conducted to investigate effects of continuous application of lime for rice cultivation from 1969 to 2014. The treatments were no lime treatments (N, NPK, NPKC, and NPKS) and lime treatments (N+L, NPK+L, NPKC+L, and NPKS+L). The application of lime in addition to N, NPK, and NPKC tended to increase pH, exchangeable Ca, and available $SiO_2$. The input of mean annual $1,170Mg\;ha^{-1}yr^{-1}$ of lime increased pH $0.0042yr^{-1}$, $0.0062yr^{-1}$, $0.0127yr^{-1}$, and $0.0041yr^{-1}$ in lime treatments (N+L, NPK+L, NPKS+L, and NPKC+L) compared with no treatments (N, NPK, NPKS, and NPKC), respectively. The mean annual Ca field balance varied from 169 to $561kg\;ha^{-1}yr^{-1}$in no treatments, from 871 to $1,263kg\;ha^{-1}yr^{-1}$ in lime treatments, indicating that Ca was accumulated in the soils. The mean annual Ca field balance in silicate fertilizer treatments (NPKS, NPKS+L) were higher than that of other treatments because silicate fertilizer included Ca component. Grain yield of rice had no significant differences between no lime treatments and lime treatments. Thus the application of lime led to changes in soil chemical properties but had no impact on the production of rice.

Changes of Soil Physical Properties by Manured Sorghum Residues Incorporation

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.379-385
    • /
    • 2013
  • Although sorghum residue production was estimated to be $8{\sim}10Mg\;ha^{-1}$, most sorghum straw was used to be burnt or removed after harvest. This experiment was conducted to evaluate the effect of the incorporation of manured sorghum residues on soil physical properties from 2010 to 2012 in the converted paddy field. Five treatment with 3 replication consisted of control, inorganic fertilizer (NPK), manured residues, sorghum stover and sawdust manure. The incorporation level of organic source was $10Mg\;ha^{-1}$ without inorganic fertilizer NPK. The investigated physical parameters were bulk density (BD), porosity, water stability aggregate (WSA), water infiltration rater (WIR), penetration resistance (PR) and soil water retention characteristics (WRC) with soil depth. The incorporation of manured sorghum residues improved WIR significantly over inorganic fertilizer (NPK), sorghum residues and sawdust manure. The BD by incorporating with manured residues on sorghum was reduced significantly with crop residue over plot of NPK and sawdust. Significant increase in WSA was observed with stubble incorporation alone or manured sorghum residues. Soil WRC were significantly enhanced with manured sorghum residue incorporated without NPK. The average PR at 0~15 cm was 0.54 MPa for manured sorghum residues. For sawdust manure plot it was 0.42 MPa, for Sawdust manure plot 0.39 MPa and for NPK plot 0.54 MPa.

The Effects of Liquid Waste from Methane Fermentation on Botanical Composition , Dry Matter Production and Nutrient Quality of Pasture Mixtures (혼파초지에서 메탄발효폐액의 시용이 식생구성 , 수량 및 목초품질에 미치는 영향)

  • 김정갑;신재성;임동규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.2
    • /
    • pp.103-108
    • /
    • 1987
  • The experiment was carried out to determine the optimum application rate of liquid waste from methane fermentation (LW) and its effect on botanical composition, dry matter yields and nutrient quality of pasture mixtures. Experimental fields was designed as a randomized block treated with NPK chemical fertilizer (NPK = 28-20-24 kg/lOa), NPK + Water 28 ton, 112 NPK + LW 28 ton, 112 NPK + LW 42 ton, LW 28 ton, LW 42 ton and LW 56 ton/lOa at Livestock Experiment Station in Suweon, 1985. The results obtained are summarized as follows: 1. Vegetation of introduced pastures, both in grasses and legumes, was markedly increased in the plots treated with methane-liquid waste. However, heavy application of liquid waste tended to increase of native weeds such as Polygronum spp., Rumex spp. and Lactuca spp. 2. Crude protein contents was increased in the plants applied with liquid waste, but NFE was decreased compared with those of chemical fertilizer applied. The concentrations of crude fat and crude fibre were, however less affected by the fertilizer resource. Among cell-wall constituents, cellulose content was decreased as the liquid waste application rate increased, while hemicellulose showed a negative association. 3. Productivity of the pasture was increased as the liquid waste application rate increased. The highest dry matter yields was obtained in the plot treated with LW 42 ton/lOa by 71 1 kg/lOa, which shows about 71% increments compared with those of chemical fertilizer treated. Net energy yields, both in starch value and NEL, were also markedly increased under liquid waste application. As a results, the optimum application rate of methane-liquid waste was found to be 42 ton in 10 a.

  • PDF

Effects of Rice Straw Compost Application on Exchangeable Potassium in Long-term Fertilization Experiments of Paddy Soils

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Ko, Byong-Gu;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.194-199
    • /
    • 2016
  • In an experiment conducted at the research field of the National Institute of Agricultural Science, we investigated the effects of mineral fertilizer and rice straw compost on exchangeable potassium and K balances, and rice grain yield under a rice single system. The treatments were no fertilization (No fert.), inorganic fertilization (N), inorganic fertilizer (N, P, K) plus rice straw compost at rates of 7.5, 15.0, 22.5, and $30.0ton\;ha^{-1}$ (NPKC7.5, NPKC15.0, NPKC22.5, and NPKC30.0, respectively). The inorganic fertilizers(N, P, K) were added with standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), and potassium ($K_2O$) were applied with $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, respectively. Exchangeable potassium for NPKC15.0 NPKC22.5, and NPK30.0 treatments was higher by $0.05{\sim}0.19cmol_c\;kg^{-1}$ than that of NPKC7.5 treatment. Increasing levels of rice straw compost resulted in an increase in the K balance from - $19.9kg\;ha^{-1}yr^{-1}$ (No fert.) to $41.9kg\;ha^{-1}yr^{-1}$ at NPKC22.5 treatment and $62.9kg\;ha^{-1}$ at NPKC30.0 treatment. Continuous application of rice straw compost with NPK fertilizers affected significantly the rice grain yields. The result of the study imply that the application of more than $22.5ton\;ha^{-1}$ of rice straw compost with NPK fertilizers are recommended as the best fertilization practice for enhancement of crop production and K supplying power of soil in the continuous rice cropping system.

Assessment of Soil Properties and Growth of Organically Cultivated Cucumber (Cucumis sativus L.) with Applications of Livestock Manure Compost and Fish Meal Liquid Fertilizer (가축분 퇴비와 어분 액비 시용이 유기농 오이 생육 및 토양환경에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Lee, Sang-min;Nam, Hong-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.23-31
    • /
    • 2018
  • This study was carried out to investigate the effects of livestock manure compost and fish-meal liquid fertilizer on the growth of cucumber and the soil properties for the stable production of organic cucumber. Cucumber was transplanted in greenhouse on the $6^{th}$ of April in 2017, and this experiment contained five treatments: livestock manure compost 100% (LC 100%), livestock manure compost 50% + fish-meal liquid fertilizer 50% (LC50 + LF50), livestock manure compost 50% (LC50), chemical fertilizer (NPK), and no fertilizer (NF). As a result, it was shown that soil chemical properties of LC50 + LF50 plot is not different from that of LC100 plot except for the EC content, but soil chemical properties of LC50 + LF50 plot is statistically significantly different from that of NPK plot except for pH. As a result of evaluating the functional diversity of soil microbial communities using Biolog system, the substrate richness (S) and the diversity index (H) were the highest in LC50 + LF50 plot. As a result of comparing the cucumber growth and yield, it was found that there was no statistically significant difference between the plant height and the fresh weight of LC100, LC50 + LF50, and NPK plot, but the plant height and the fresh weight of LC100, LC50 + LF50, and NPK plot were different from that of LC50 and NF plot. The yield of cucumber was the highest in NPK plot r(7,397 kg/10a), but there was no statistically significant difference in the yield of cucumber between NPK plot and LC100, LC50 + LF50 plot. The above-described results suggested that the livestock manure compost and fish meal liquid fertilizer can be used for organic cucumber production under greenhouse condition.

The Effects of Organic Manure and Chemical Fertilizer Application Levels on the Growth and Nutrient Concentrations of Yellow Poplar (Liriodendron tulipifera Lin.) Seedlings (유기질 및 화학비료 처리수준이 어린 백합나무 생장 및 양분농도에 미치는 영향)

  • Han, Si Ho;An, Ji Young;Choi, Hyung-Soon;Cho, Min Seok;Park, Byung Bae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.5
    • /
    • pp.37-48
    • /
    • 2015
  • Soil nutrient management is important to maintain the constant productivity of seedling production in the nursery for successful forest restoration. This study investigated the effects of organic manure and chemical fertilizer application levels on the growth, soil properties, and nutrient concentrations of yellow poplar seedlings. One-year-old yellow poplar seedlings were treated with the combination of 3 level organic manures(0, 5 Mg/ha, 10 Mg/ha; mixture of poultry manure, cattle manure, swine manure, and sawdust) and 3 level nitrogen-phosphorus-potassium(NPK) chemical fertilizers(0, 1x(urea, $30g/m^2$; fused superphosphate, $70g/m^2$; potassium chloride, $15g/m^2$), 2x). Organic manure significantly increased the soil pH and the concentrations of nitrogen, available phosphorous, exchangeable potassium, calcium, and magnesium. In contrast, the NPK chemical fertilizer decreased the soil pH and exchangeable calcium concentration, did not affect the soil concentrations of nitrogen and magnesium, and increased the concentrations of available phosphorous and exchangeable potassium. Both organic manure and NPK chemical fertilizer treatments increased the seedling height, root collar diameter, and dry weight by 39% and 25%, respectively. The treatment with manure 5 Mg/ha and NPK 2x chemical fertilizer mostly increased seedling dry weight by 2.6 times more than that of the control. Compared to the effects of the fertilization treatments on the soil properties, the effects on nutrient concentrations in the leaves were relatively small. These findings indicate that organic manure that was derived from livestock byproducts and sawdust can be utilized with chemical fertilizer to improve seedling production as well as conserving soil quality.