DOI QR코드

DOI QR Code

Association of SNP Marker in the Thyroglobulin Gene with Carcass and Meat Quality Traits in Korean Cattle

  • Shin, S.C. (Division of Animal Science and Resources, College of Life Science and Natural Resources Sangji University) ;
  • Chung, E.R. (Division of Animal Science and Resources, College of Life Science and Natural Resources Sangji University)
  • 투고 : 2006.04.07
  • 심사 : 2006.08.22
  • 발행 : 2007.02.01

초록

Thyroid hormones play an important role in regulating metabolism and can affect homeostasis of fat depots. The gene encoding thyroglobulin (TG), producing the precursor for thyroid hormones, has been proposed as a positional and functional candidate gene for a QTL with an effect on fat deposition. The SNP occurs in the 5' promoter region of the TG gene and is widely used in marker assisted selection (MAS) programs to improve the predictability of marbling level and eating quality in beef cattle. In this study, we identified three SNPs at the 5' promoter region of the TG gene in Korean cattle. Of the three SNPs identified in TG gene, the C257T and A335G were previously unreported new SNPs. The sequence data were submitted to GenBank (GenBank accession number: AY615525). The previously reported C422T SNP showed three genotypes, CC, CT and TT, by digestion with the restriction enzyme MflI using the PCR-RFLP method. A new allelic variant corresponding to the C${\rightarrow}$T and A${\rightarrow}$G mutations at positions 257 and 335, respectively, could be detected by the SSCP analysis. The gene-specific SNP marker association analysis indicated that the C422T SNP marker was significantly associated (p<0.05) with marbling score. Animals with the CC and CT genotypes had higher marbling score than those with the TT genotype. Results from this study suggest that TG gene-specific SNP may be a useful marker for meat quality traits in future MAS programs in Korean cattle.

키워드

참고문헌

  1. Ailhaud, G., P. Grimaldi and R. Negrel. 1992. Cellular and molecular aspects of adipose tissue development. An. Rev. Nutr. 12:207-233. https://doi.org/10.1146/annurev.nu.12.070192.001231
  2. Barendse, W. 1999. Assessing lipid metabolism. International patent application PCT/AU98/00882, international patent publication WO 99/23248.
  3. Barendse, W., R. Bunch, M. Thomas, S. Armitage, S. Baud and N. Donaldson. 2001. The TG5 DNA marker test for marbling capacity in Australian feedlot cattle. Available at: www.Beef.crc.org.au/Publications/LatestPublications/feeder20 02/session6/6a.html. accessed: March 9, 2003
  4. Burrell, D. N., G. H. D. Moser, J. Hetzel, Y .S. S. Mizoguchi, T. K. S. Hirano, Y. S. K. Z. Sugimoto and K. R. Mengersen. 2004. Meta analysis confirms associations of the TG5 thyroglobulin polymorphism with marbling in beef cattle. 29th International Conference on Animal Genetics ISAG 2004/TOKYO P.135.
  5. Casas, E., S. D. Shackelford, J. W. Keele, R. T. Stone, S. M. Kappes and M. Koohmaraie. 2000. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78:560-569. https://doi.org/10.2527/2000.783560x
  6. Casas, E., S. N. White, D. G. Riley, T. P. L. Smith, R. A. Brenneman, T. A. Olson, D. D. Johnson, S. W. Coleman, G.. L. Bennett and C. C. Chase, Jr. 2005. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition trait in Bos indicus cattle. J. Anim. Sci. 83:13-19. https://doi.org/10.2527/2005.83113x
  7. Chung, E. R. and W. T. Kim. 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Aust. J. Anim. Sci. 18:1061-1065. https://doi.org/10.5713/ajas.2005.1061
  8. Darimont, C., D. Gaillard, G. Aihaud and R. Negrel. 1993. Terminal differentiation of mouse preadipocyte cells: adipogenisis and antimitogenic role of triiodothyronine. Mol. Cell Endocrinol. 98:67-73. https://doi.org/10.1016/0303-7207(93)90238-F
  9. De, S., M. D. MacNeil, X. L. Wu, J. J. Michal, Q. J. Xiao, M. D. Garcia, K. B. Griffin, C. T. Gaskins, J. J. Reeves, J. R. Busboom, R. W. Wright Jr. and Z. Jiang. 2004. Detection of quantitative trait loci for marbling and backfat in Wagyu $\times$Limousin F2 crosses using a candidate gene approach. In: Proceedings of the Western Section, American Society of Animal Science, 55:95-98.
  10. Ge, W., M. E. Davis, H. C. Hines, K. M. Irvin and R. C. M. Simmen. 2003. Association of single nucleotide polymorphisms in the growth hormone and growth hormone receptor genes with blood serum insulin-like growth factor I concentration and growth traits in Angus cattle. J. Anim. Sci. 81:641-648. https://doi.org/10.2527/2003.813641x
  11. Grisart, B., W. Coppieters, F. Farnir, L. Karim, C. Ford, P. Berzi, N. Cambisano, M. Mni, S. Reid, P. Simon, R. Spelman, M. Georges and R. Snell. 2001. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome. Res. 12:222-231. https://doi.org/10.1101/gr.224202
  12. Mears, G. J., P. S. Mir, D. R. C. Bailey and S. D. M. Jones. 2001. Effect of Wagyu genetics on marbling, backfat, and circulating hormones in cattle. Can. J. Anim. Sci. 81:6573.
  13. Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28:161-177. https://doi.org/10.1186/1297-9686-28-2-161
  14. Moore, S. S., C. Li, J. Basarab, W. M. Snelling, J. Kneeland, B. Murdoch, C. Hansen and B. Benkel. 2003. Fine mapping of quantitative trait loci and assessment of positional candidate genes for backfat on bovine chromosome14 in a commercial line of Bos Taurus. J. Anim. Sci. 81:1919-1925. https://doi.org/10.2527/2003.8181919x
  15. Rincker, C. B., N. A. Pyatt, L. L. Berger and D. B. Faulkner. 2006. Relationship among GeneSTAR marbling marker, intramuscular fat deposition, and expected progeny differences in early weaned Simmental steers. J. Anim. Sci. 84:686-693. https://doi.org/10.2527/2006.843686x
  16. Smas, C. M. and H. S. Sul. 1995. Control of adipocyte differentiation. Biochem. J. 309:697-710. https://doi.org/10.1042/bj3090697
  17. Stone, R. T., E. Casas, T. P. Smith, J. W. Keele, G. Harhay, G. L. Bennett, M. Koohmaraie, T. L. Wheeler, S. D. Shackelford and W. M. Snelling. 2005. Identification of genetic markers for fat deposition and meat tenderness on bovine chromosome 5: Development of a low-density single nucleotide polymorphism map. J. Anim. Sci. 83:2280-2288. https://doi.org/10.2527/2005.83102280x
  18. Thaller, G., C. Kuhn, A. Winter, G.. Ewald, O. Bellmann, J. Wegner, H. Zuhlke and R. Fries. 2003. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim. Genet. 34:354-357. https://doi.org/10.1046/j.1365-2052.2003.01011.x

피인용 문헌

  1. Association of polymorphisms in the leptin and thyroglobulin genes with meat quality and carcass traits in beef cattle vol.41, pp.10, 2012, https://doi.org/10.1590/S1516-35982012001000004
  2. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing vol.16, pp.1, 2015, https://doi.org/10.1186/s12863-015-0265-1
  3. Effect of thyroglobulin gene polymorphisms on growth, carcass composition and meat quality traits in Chinese beef cattle vol.42, pp.9, 2015, https://doi.org/10.1007/s11033-015-3919-1
  4. Molecular Cloning and Characterization of Bovine HMGA1 Gene vol.20, pp.11, 2007, https://doi.org/10.5713/ajas.2007.1662
  5. SNP Detection of Carboxypeptidase E Gene and Its Association with Meat Quality and Carcass Traits in Korean Cattle vol.20, pp.3, 2007, https://doi.org/10.5713/ajas.2007.328
  6. Identification of a Novel SNP Associated with Meat Quality in C/EBP${\alpha}$ Gene of Korean Cattle vol.20, pp.4, 2007, https://doi.org/10.5713/ajas.2007.466
  7. Analysis of SNPs in Bovine CSRP3, APOBEC2 and Caveolin Gene Family vol.49, pp.6, 2007, https://doi.org/10.5187/jast.2007.49.6.719
  8. DNA Polymorphisms in SREBF1 and FASN Genes Affect Fatty Acid Composition in Korean Cattle (Hanwoo) vol.22, pp.6, 2007, https://doi.org/10.5713/ajas.2009.80573
  9. Detection of Quantitative Trait Loci for Growth and Carcass Traits on BTA6 in a Hanwoo Population vol.23, pp.3, 2007, https://doi.org/10.5713/ajas.2010.90586
  10. Application of Linkage Disequilibrium Mapping Methods to Detect QTL for Carcass Quality on Chromosome 6 Using a High Density SNP Map in Hanwoo vol.24, pp.4, 2007, https://doi.org/10.5713/ajas.2011.11019
  11. 한우 14번 염색체 QTL 영역내 Fatty acid binding protein 5 유전자의 다형성과 도체 및 육질 형질과의 관련성 분석 vol.53, pp.4, 2007, https://doi.org/10.5187/jast.2011.53.4.311
  12. Identification of SNPs in TG and EDG1 genes and their relationships with carcass traits in Korean cattle (Hanwoo) vol.39, pp.3, 2007, https://doi.org/10.7744/cnujas.2012.39.3.349
  13. Analysis of Tenderness and Marbling-related Polymorphisms in Beefmaster Cattle vol.10, pp.7, 2007, https://doi.org/10.3923/ajava.2015.345.351
  14. Comprehensive assessment of candidate genes associated with fattening performance in Holstein-Friesian bulls vol.62, pp.1, 2007, https://doi.org/10.5194/aab-62-9-2019
  15. Asociación de polimorfismos en los genes CAPN y CAST con propiedades fisicoquímicas de la carne bovina: una revisión vol.16, pp.1, 2007, https://doi.org/10.21615/cesmvz.16.1.1
  16. Associations between gene polymorphisms and selected meat traits in cattle - A review vol.34, pp.9, 2007, https://doi.org/10.5713/ab.20.0672