DOI QR코드

DOI QR Code

Comparative analysis of glycerin in cosmetics by LC/MS and 1H NMR

LC/MS와 1H NMR을 이용한 화장품속의 글리세린 비교분석

  • Park, Gyo-Beom (Center for Chemical Analysis, Korea Research Institute of Chemical Technology) ;
  • Park, Chan Jo (Center for Chemical Analysis, Korea Research Institute of Chemical Technology) ;
  • Lee, Sueg-Geun (Center for Chemical Analysis, Korea Research Institute of Chemical Technology)
  • 박교범 (한국화학연구원 화학분석센터) ;
  • 박찬조 (한국화학연구원 화학분석센터) ;
  • 이석근 (한국화학연구원 화학분석센터)
  • Received : 2007.06.12
  • Accepted : 2007.10.08
  • Published : 2007.10.25

Abstract

The comparative analysis of glycerin in cosmetic samples was carried out by LC/MS and $^1H$ NMR spectrometry. For the LC/MS analysis, aqueous solution was controlled in strong basic condition with sodium hydroxide, and benzoyl chloride was added to the solution for the derivatization of glycerin. The derivative was extracted using pentane and analyzed by the LC/MS. For the $^1H$ NMR analysis, sample was directly dissolved in $D_2O$ solvent without pretreatment. The quantitative analysis of glycerin was done by $^1H$ NMR ERETIC method. The analysis results of LC/MS and $^1H$ NMR showed that the calibration curves were a good linearity with $r^2=0.9991$ in the range of 0.1 to $10{\mu}g/mL$ and $r^2=1$ in the range of 25 to $500{\mu}g/mL$, respectively.

액체크로마토그래피/질량분석법(LC/MS) 및 핵자기공명분광분석법 $^1H(NMR)$을 이용하여 화장품에 들어있는 글리세린을 동시 비교분석하였다. 화장품 시료를 물에 용해시키고 수산화나트륨을 첨가하여 시료용액을 강알칼리 상태로 유지시킨 후, 시료용액 중의 글리세린을 benzoyl chloride로 유도체화 반응 시키고 유도체화된 글리세린을 pentane으로 추출하여 LC/MS로 정량분석 하였다. $^1H$ NMR 분석은 시료를 전처리 없이 $D_2O$ 용매에 직접 용해시키고, 글리세린을 ERETIC(Electronic REference To access In vivo Concentrations) 방법을 이용하여 $^1H$ NMR로 직접 정량분석 하였다. LC/MS 및 NMR 분석결과 LC/MS의 검량선은 $0.1-10{\mu}g/mL$ 농도범위에서 $r^2=0.9991$ 이었고 $^1H$ NMR의 검량선은 $25-500{\mu}g/mL$ 농도범위에서 $r^2=1$의 상관계수를 갖는 좋은 직선성을 얻었다.

Keywords

References

  1. K. Kudo and R. Ito, Toho Igakkai Zasshi, 19, 415-417 (1972)
  2. J. Graca and H. Pereira, J. Agric. Food Chem., 48, 5476-5483 (2000) https://doi.org/10.1021/jf0006123
  3. I. L. Mattos, J. M. Fernandez-Romero, M. D. Luque de Castro and M. Valcarcel, Analyst, 120, 179-182 (1995) https://doi.org/10.1039/an9952000179
  4. E. Mataix and M. D. Luque de Castro, Talanta, 51, 489-496 (2000) https://doi.org/10.1016/S0039-9140(99)00297-0
  5. A. O. S. S. Rangel and I. V. Toth, Anal. Chim. Acta. 416, 205-210 (2000) https://doi.org/10.1016/S0003-2670(00)00905-3
  6. M. A. Segundo and A. O. S. S. Rangel, Anal. Chim. Acta, 458, 131-138 (2002) https://doi.org/10.1016/S0003-2670(01)01525-2
  7. G. Fronza, C. Fuganti, and P. Grasselli, J. Agric. Food Chem. 46, 477-480 (1998) https://doi.org/10.1021/jf9706179
  8. G. B. Park and S. G. Lee, Anal. Sci. & Tech., 17(6), 527-531 (2004)
  9. S. Akoka, L. Barantin and M. Trierweiler. Anal. Chem., 71, 2554-2557 (1999) https://doi.org/10.1021/ac981422i
  10. V. Silvestre, S. Goupry, M. Trierweiler, R. Robins and S. Akoka, Anal. Chem., 73, 1862-1868 (2001) https://doi.org/10.1021/ac0013204