Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique

Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작

  • Park, Ji-Young (School of Pharmacy, University of North Carolina at Chapel Hill) ;
  • Gratton, Stephanie (Department of Chemistry, University of North Carolina at Chapel Hill) ;
  • Benjamin, Maynor (Department of Chemistry, University of North Carolina at Chapel Hill) ;
  • Lim, Jomg Sung (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Desimone, Joseph (Department of Chemistry, University of North Carolina at Chapel Hill)
  • 박지영 (노스캐롤라이나 대학교 약학대학) ;
  • ;
  • ;
  • 임종성 (서강대학교 화공생명학과) ;
  • Received : 2007.04.01
  • Accepted : 2007.05.18
  • Published : 2007.10.31

Abstract

Polymeric hydrogel particles were fabricated to demonstrate the scale-up possibilities with the Particle Replication In Non-wetting Templates (PRINT) process. A permanently etched, specifically designed master was made on a silicon wafer using conventional photolithography, then reactive ion etching. The master and substrate were used repeatedly to make a large number of identical elastomeric perfluoropolyethers (PFPE) replica molds. The PFPE replica molds were used to fabricate and harvest individual, monodisperse micron-sized particles using the PRINT process. A water-soluble polymer adhesive was used as a sacrificial layer for harvesting particles. Particles were composed of biodegradable poly (ethylene glycol) diacrylate (PEG-diA), and aminoethylacrylate (AEM) and 2-acryloxyethyltrimethyl ammonium chloride (AETMAC) were added to them for improving the uptake of the cells. This study suggested PRINT used to produce the uniformed and shape specific biodegradable polymer is the effective technique for the non viral vector for the drug and the gene delivery.

본 연구에서는 UV photo-lithography 방식의 particle replication in non-wetting templates(PRINT) 법을 이용하여 약물 전달에 운반체로 사용되는 $3{\mu}m{\times}3{\mu}m{\times}2{\mu}m$ 사이즈의 균일한 고분자 하이드로젤 입자를 제조하였다. 몰드(mold)와 기재(substrate)는 PRINT 방식을 통하여 탄성을 지닌 perfluoropolyethers(PFPE)로 제작하였으며 이를 반복적으로 사용할 수 있도록 하였다. 제작된 입자는 점착성이 있는 수용성 고분자를 이용하여 회수하였다. 입자의 주요 성분은 생분해성 고분자인 poly(ethylene glycol) diacrylate(PEG-diA)이며, 세포 uptake에 적합하도록 aminoethylacrylate(AEM)와 2-acryloxyethyltrimethyl ammonium chloride(AETMAC)를 첨가하였다. 본 연구를 통해 균일하고 원하는 크기의 생체분해성 고분자 입자를 제작하는 PRINT 기술이 약물 전달 및 유전자 전달에 필요한 수송체인 비바이럴 벡터를 제작하기 위한 효과적인 기술임을 제시하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Niidome, T. and Huang, L., 'Gene Therapy Progress and Prospects: Nonviral vectors,' Gene Therapy, 9(24), 1647-1652(2002) https://doi.org/10.1038/sj.gt.3301923
  2. Herweijer, H. and Wolff, J. A., 'Progress and Prospects: Naked DNA Gene Transfer and Therapy,' Gene Therapy, 10(6), 453-458 (2003) https://doi.org/10.1038/sj.gt.3301983
  3. Mulligan, R. C., 'The Basic Science of Gene Therapy,' Science, 260(5110), 926-932(1993) https://doi.org/10.1126/science.8493530
  4. Kay, M. A., Glorioso, J. C. and Naldini, L., 'Viral Vectors for Gene Therapy: the Art of Turning Infectious Agents Into Vehicles of Therapeutics,' Nature Medicine, 7, 33-40(2001) https://doi.org/10.1038/83324
  5. Verma, I. M. and Somia, S. N., 'Promises, Problems and Prospects,' Nature, 389(6648), 239-242(1997) https://doi.org/10.1038/38410
  6. Nishikawa, M. and Huang, L., 'Nonviral Vectors in the New Millennium: Delivery Barriers in Gene Transfer,' Human Gene Therapy, 12(8), 861-870(2001) https://doi.org/10.1089/104303401750195836
  7. Lu, Q. L., Gharios, G. B. and Partridge, T. A., 'Non-Viral Gene Delivery in Skeletal Muscle: a Protein Factory,' Gene Therapy, 10(2), 131-142(2003) https://doi.org/10.1038/sj.gt.3301874
  8. Xia, Y. and Whitesides, G. M., 'Soft Lithography,' Angew. Chem. Int. Ed, 37(5), 550-575(1998) https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  9. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. and Ingber, D. E., 'Soft Lithogaphy in Biology and Biochemistry,' Annual Review of Biomedical Engineering, 3, 335-373(2001) https://doi.org/10.1146/annurev.bioeng.3.1.335
  10. Schmid, H. and Michel, B., 'Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography,' Macromolecules, 33(8), 3042-3049(2000) https://doi.org/10.1021/ma982034l
  11. Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M. and Desimone, J. M., 'Direct Fabrication and Harvesting of Monodisperse, Shape-Specific Nanobiomaterials,' J. Amer. Chem. Soc., 127(28), 10096-10100(2005) https://doi.org/10.1021/ja051977c
  12. Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. and Desimone, J. M., 'Solvent-Resistant Photocurable 'Liquid Teflon' for Microfluidic Device Fabrication,' J. Amer. Chem. Soc., 126(8), 2322-2323(2004) https://doi.org/10.1021/ja031657y
  13. Park, J. Y., Maynor, B. W., Pandya, A., Gratton, S. E. and Desimone, J. M., 'Fabrication and Harvest of Polymeric Micro, and Nano Particles Using Particle Replication in Non-wetting Templates (PRINT),' NSF-STC fall meeting, UNC, 18-19(2005)
  14. Larken, E. E., Christopher, M. W., Maynor, B. W., Rolland, J. P., Denison, M. G., Gratton, S. E., Park, J. Y., Ashish, P. A., Elizabeth, E. L., Juliano, R. L., Hahn, K. M. and Desimone, J. M., 'Monodisperse Nanocarriers: Novel Fabrication of Polymeric Nanoparticles for Bio-nanotechnology,' SPIE-The International Society for Optical Engineering, Advances in Resist Technology and Processing, 32-34(2006)