Bacillus subtilis MJP1이 생산하는 Bacteriocin-Like Substances

Characterization of Bacteriocin-Like Substances Produced by Bacillus subtilis MJP1

  • 발행 : 2007.12.28

초록

메주로부터 항곰팡이 활성을 보이는 균주 1종과 이에 감수성을 나타내는 곰팡이 3종을 분리하였다. 분리된 균주는 형태학적, 생화학적 특성 조사와 16S rRNA 염기서열 결정을 통한 균주 동정결과 Bacillus subtilis MJP1으로 명명하였고, 3종의 곰팡이는 ITS-5.85 rRNA염기서열 분석을 통하여 Aspergillus petrakii PF-1, A. ochraceus PF-2, 그리고 A. nidulans PF-3로 명명하였다 B. subtilis MJP1은 곰팡이 에 대한 강한 저해활성 뿐만 아니라 Candida 속 효모들과 그람 양성균에 대한 넓은 범위의 저해활성을 나타내었다. B. subtilis MJP1의 생육에 따른 항균 활성을 측정한 결과 항진균 활성은 배양 16시간부터 최대 활성(3,200 AU/ml)을 나타내어 균이 사멸기에 접어든 후에도 활성을 그대로 유지한 반면, 항세균 활성은 대수기 중반인 12시간부터 25시간까지 가장 높은 활성 (1,600 AU/ml)을 보이다가 72시간 이후에는 활성을 상실하였다. pH 안정성 실험에서 항진균 활성과 항세균 활성 모두 pH $6{\sim}10$ 구간에서 비교적 안정한 결과를 보였으나, 열처리 실험에서 항진균 활성은 영향을 받지 않은 반면, 항세균 활성은 $30^{\circ}C$ 이상의 온도에서는 불안정한 결과를 보였다. 각종 효소에 대한 안정성 실험에서 항진균 활성은 어떠한 효소에도 영향을 받지 않았으나, 항세균 활성은 단백분해효소 처리 후에 활성이 실활 됨으로써 항균 물질이 단백질성 물질임을 추정하였다. $C_{18}$ Sep-Pak column으로 부분 정제한 항균 물질이 항진균 활성과 항세균 활성을 나타내므로 소수성을 가지는 물질임을 알 수 있으며, Tricine-SDS-PAGE및 direct detection을 통하여 항진균 물질의 분자량은 약 2.4 kDa 정도이며, 항세균 물질의 분자량은 약 4.5 kDa으로_ 확인되었다. 따라서 B. subtilis MJP1은 항진균 활성과 항세균 활성을 가진 bacteriocin-like substances를 생산함을 알 수 있고 이와 같은 새로운 항미생물 물질은 천연 식품보존제 및 사료보존제 뿐만 아니라 항생제 대체 의약품으로도 활용이 기대되며, 이를 위하여 향후 이 물질들의 보다 정확한 구조 및 특성 규명 등의 연구가 필요하다.

The MJP1 bacterial strain, which possesses antifungal activity, was isolated from meju and identified as Bacillus subtilis based on its morphological and biochemical properties, as well as its 16S rRNA sequence. Antimicrobial activity was found against various species of Gram-positive bacteria, yeasts, and molds, including food-spoilage microorganisms. The antifungal activity was found to be stable after heat and proteolytic enzyme treatment, and in the pH range of $6.0{\sim}10.0$. The antibacterial activity was stable in the pH range of $6.0{\sim}10.0$, but about 50% of the activity was lost after 24 hr at $30^{\circ}C$. The antibacterial compound was also inactivated by proteolytic enzyme treatment, indicating its proteinaceous nature. The apparent molecular masses of the partially purified antifungal and antibacterial compounds, as indicated by using the direct detection method in Tricine-SDS-PAGE, were approximately 2.4 kDa and 4.5 kDa, respectively. These studies suggest that B. subtilis MJP1 produces two bacteriocin-like substances with antifungal and antibacterial activities.

키워드

참고문헌

  1. Barefoot, S. F. and C. G Netlles. 1993. Antibiotics revisited: bacteriocins produced by dairy stater cultures. J. Dairy Sci. 76: 2366-2379 https://doi.org/10.3168/jds.S0022-0302(93)77574-8
  2. Bhunia, A. K., M. C. Johnson, and B. Ray. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl-polyacrylamide gel electrophoresis. J. Indust. Microbiol. 2: 319-322 https://doi.org/10.1007/BF01569434
  3. Bizani, D. and A. Brndelli. 2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Strain 8 A. J. Appl. Microbiol. 93: 512-519 https://doi.org/10.1046/j.1365-2672.2002.01720.x
  4. Carbone, I. and L. M. Kohn. 1993. Ribosomal DNA sequence divergence within internal transcribed spacer 1 of the Selerotiniaccae. Mycologia. 85: 415-427 https://doi.org/10.2307/3760703
  5. Hyronimus, B., C. Le Marrec, and M. C. Urdaci. 1998. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans 14. J. Appl. Microbiol. 85: 42-50 https://doi.org/10.1046/j.1365-2672.1998.00466.x
  6. Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocin of gram-positive bacteria. Microbiol. Rev. 59: 171-200
  7. Johnson, B. A., H. Anker, and F. L. Meleney. 1945. Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science. 102: 376-377 https://doi.org/10.1126/science.102.2650.376
  8. Katz, E. and A. L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible function. Bacteriol. Rev. 41: 449-474
  9. Kim, S. I., I. C. Kim, and H. C. Chang. 1999. Isolation and identification of antimicrobial agent producing microorganisms and sensitive strain from soil. J. Kor. Soc. Food Sci. Nutr. 28: 526-533
  10. Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie. 70: 337-349 https://doi.org/10.1016/0300-9084(88)90206-4
  11. Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85
  12. Klein, C, C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol. 59: 296-303
  13. Kluge, B., J. Vater, J. Salnikow, and K. Eckart. 1998. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett. 231: 107-110 https://doi.org/10.1016/0014-5793(88)80712-9
  14. Lebbadi, M., A. Galvez, M. Maqueda, M. Martinez-Bueno, and E. Valdivia. 1994. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Bacteriol. 77: 49-53 https://doi.org/10.1111/j.1365-2672.1994.tb03043.x
  15. Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology. 87: 151-174 https://doi.org/10.1016/0300-483X(94)90159-7
  16. Munimbazic, C. and L. B. Bullerman. 1998. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J. Appl. Microbiol. 84: 959-968 https://doi.org/10.1046/j.1365-2672.1998.00431.x
  17. Nakano, M. M. and P. Zuber. 1990. Molecular biology of antibiotic production in Bacillus. Biotechnol. 10: 223-240
  18. Odunfa, S. A. and G. F. Oyeyiola. 1985. Microbiological study of the fermentation of ugba, a Nigerian indigenous fermented food flavor. J. Plant Foods. 6: 155-163 https://doi.org/10.1080/0142968X.1985.11904309
  19. Oscariz, J. C. and A. G. Pisabarro. 2001. Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria. Int. Microbiol. 4: 13-19
  20. Potera, C. 1994. From bacteria: a new weapon against fungal infection. Science. 265: 605 https://doi.org/10.1126/science.8036509
  21. Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate- polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  22. Shafer, W. M. 1997. Antibacterial peptide protocols. Methods in molecular biology. Humana, Totowa, NJ
  23. Sharp, R. J., M. D. Scawen, and T. Atkinson. 1989. Fermentation and downstream processing of Bacillus, pp. 255-292. In Harwood, C. R. (ed.), Bacillus. Biotechnology handbooks, Plenum Press, New York
  24. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857 https://doi.org/10.1111/j.1365-2958.2005.04587.x
  25. Sun, L., Z. Lu, X. Bie, F. Lu, and S. Yang. 2006. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J. Microbiol. Biotechnol. 22: 1259-1266 https://doi.org/10.1007/s11274-006-9170-0
  26. Tagg, G. R., A. S. Dajani, and L. W. Wannamarker. 1976. Bacteriocin of Gram-positive bacteria. Bacteriol. Rev. 40: 772-756
  27. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  28. Vanittanakom, N., W. Loettler, U. Koch, and G. Jung. 1986. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39: 881-901
  29. Wang, J. and D. Y. D. Fung. 1996. Alkaline-fermented foods: a review with emphasis on pidan fermentation. Crit. Rev. Microbiol. 22: 101-138 https://doi.org/10.3109/10408419609106457
  30. White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal DNA for phylogenetics, pp. 315-322. In Innis, M. A., D. H. Gelfand. J. J. Sninsky, and T. J. White. (eds.), PCR protocols: a guide to the methods and applications. Academic Press, Inc., New York
  31. Yokotsuka, T. 1985. Fermented protein foods in the orient, with emphasis on shoyu and miso in Japan, pp. 197-247. In Wood, B. J. B. (ed.), Microbiology of Fermented Foods. Elsevier Applied Science, London
  32. Yoon, J. H., S. T. Lee, and Y. H. Park. 1996. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194
  33. Zuber, P., M. M. Nakano, and M. A. Marahiel. 1993. Peptide antibiotics, pp. 896-916. In Sonenshein, A. C., J. A. Hoch, and R. Losick. (eds.), Bacillus subtilis and other grampositive bacteria: biochemistry, physiology and molecular genetics. American Society for Microbiology, Washington, D.C., U.S.A