Effects of Plants, Rhizobacteria and Physicochemical Factors on the Phytoremediation of Contaminated Soil

오염 토양의 식물상 복원효율에 미치는 식물, 근권세균 및 물리.화학적 인자의 영향

  • Hong, Sun-Hwa (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 홍선화 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Published : 2007.12.28

Abstract

Phytoremediation is an economic and environmentally friendly technique to remediate contaminated-soil. In this study, the effects of plants, rhizobacteria and physicochemical factors on phytoremediation have been reviewed. For successful phytoremediation, the selection of plants is primarily important. To remediate soil contaminated with petroleum hydrocarbon, raygrass (Lolium multiflorum lam), white mustard, vetch (Vicia villosa), tall fescue (Festuca arundinacea), legumes, poplar, and Pine (Pinus densiflora) were mainly applied, and the removal efficiency of petroleum hydrocarbon were ranged 68 to 99%. Corn (Zea mays), raygrass (Lolium multiflorum lam), vetch (Vicia villosa), mustard, clover (Trifolium repens), and tall fescue (Festuca arundinacea) were used for the removal of polycyclic aromatic hydrocarbon, and their removal efficiencies were 50-98%. Rhizobacteria play significant roles for phytoremediation because they can directly participate in the degradation of contaminant as well as promoting plants growth. The following rhizobacteria were preferred for phytoremediation: Azospirillum lipoferum, Enterobactor cloacae, Azospirillum brasilense, Pseudomonas putida, Burkholderia xenovorans, Comamonas testosterone, Pseudomonas gladioli, Azotobacter chroococcum, Bacillus megaterium, and Bacillus subtilis. Pysicochemical factors such as pH, temperature, nutrient, electron acceptor, water content, organic content, type of contaminants are consequential limiting factors for phytoremediation.

토양오염을 복원하는 방법 중 식물상 복원은 식물을 이용하여 오염물을 제거하는 기술로, 환경 친화적이며, 경제적인 기술이기 때문에 많이 이용되고 있다. 이 연구에서는 식물상 복원에 있어 식물의 영향, 근권 세균과 물리화학적 제한인자에 대해 고찰하였다. 성공적인 식물상 복원을 위해서는 식물의 선택이 가장 중요하다. 유류(디젤) 분해를 위해 적용된 식물은 쥐보리(Lolium multiflorum lam), 베치(Vicia villosa), 버섯류(white mustard), 톨페스큐(Festuca arundinacea), 콩과식물(leguminosae), 포플러, 소나무(Pinus densiflora) 등이고, 유류 제거 효율은 68-99% 이었다. PAH(polycyclic aromatic hydrocarbons) 제거용으로는 옥수수(Zeo mays), 쥐보리, 베치, 버섯류, 토끼풀(Trifolium repens), 그리고 톨페스큐이 이용되었고, 50-98%의 제거 효율을 보였다. 식물의 성장을 향상시킬 뿐 만 아니라, 오염물질을 직접적으로 제거할 수 있는 근권 세균도 식물상 복원에 있어 중요한 역할을 한다. 식물상 복원에 이용된 근권 세균에는 Azospirillum lipoferum, Enterobactor cloacae, Azospirillum brasilense, Pseudomonas putida, Burkholderia xenovorans, Comamonas testosterone, Pseudomonas gladioli, Azotobacter chroococcu, Bacillus megaterium, Bacillus subtilis 등이 있다. pH, 온도, 영양물질, 최종전자수용체, 수분함량, 유기물 함량, 오염물질 종류와 물리화학적 인자도 식물상 복원에 있어 제한 요소로 작용한다.

Keywords

References

  1. Adam, G. and H. J. Duncan. 2002. Influence of diesel fuel on seed germination. Environ. Pollut. 120: 363-370 https://doi.org/10.1016/S0269-7491(02)00119-7
  2. Ahn, T. S., J. O. Ka, G. H. Lee, and H. G. Song. 2007. Revegetation of a lakeside barren area by the application of plant growth-promoting rhizobacteria. J. Microbiol. 45: 171-174
  3. Aslantas, R., C. Ramazan, and F. Sabin. 2007. Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci. Horticamsterdam 111: 371-377 https://doi.org/10.1016/j.scienta.2006.12.016
  4. Aslund, A. L. W., B. A. Zeed, A. Rutter, and K. J. Reimer. 2007. In situ phytoextraction of polychlorinated biphenyl (PCB) contaminated soil. Sci. Total Environ. 374: 1-12 https://doi.org/10.1016/j.scitotenv.2006.11.052
  5. Boopathy, R. 2004. Factors limiting bioremediation technologies (review paper). Bioresource Technol. 74: 63-67 https://doi.org/10.1016/S0960-8524(99)00144-3
  6. Betancur-Galvis, L. A., D. Alvarez-Bernal, A. C. Ramos-Valdivia, and L. Dendooven. 2006. Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco. Chemosphere 62: 1749-1760 https://doi.org/10.1016/j.chemosphere.2005.07.026
  7. Burken, J. G. and J. L. Schnoor. 1996. Phytoremediation: plant uptake of atrazine and role of root exudates. J. Environ. Eng.-ASCE 122: 958-963 https://doi.org/10.1061/(ASCE)0733-9372(1996)122:11(958)
  8. Chekol, T., L. R. Vough, and R. L. Chaney. 2004. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ. Int. 30: 799-804 https://doi.org/10.1016/j.envint.2004.01.008
  9. Coulon, F., E. Pelletier, L. Gourhant, and D. Delille. 2005. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58: 1439-1448 https://doi.org/10.1016/j.chemosphere.2004.10.007
  10. Cunningham, S. D. and W. R. Berti. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol. 29: 207-220 https://doi.org/10.1007/BF02632036
  11. Eapen, S., S. Singh, V. Thorat, C. P. Kaushik, K. Ra, and S. F. D'Souza. 2006 Phytoremediation of radiostrontium (^{90}Sr$) and radiocesium ($^{137}Cs$) using giant milky weed (Calotropis gigantea R.Br.) plants. Chemosphere 65: 2071-2073 https://doi.org/10.1016/j.chemosphere.2006.06.049
  12. Escalante-Espinosa, E., M. E. Gallegos-Martinez, E. Favela-Torres, and M. Gutierrez-Rojas. 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413 https://doi.org/10.1016/j.chemosphere.2004.10.034
  13. Esitken, A., L. Pirlak, M. Turan, and F. Sahin. 2006. Effects of floral and foliar application of plant growth promoting rhizobacteria(PGPR) on yield, growth and nutrition of sweet cherry. Sci. Hortic-amsterda 110: 324-327 https://doi.org/10.1016/j.scienta.2006.07.023
  14. Etsuko, K., M. Tsukasa, M. Shyoji, and T. Masahiko. 2006. Ryegrass enhancement of biodegradation in diesel-contaminated soil. Enviro. Exp. Bot. 55: 110-119 https://doi.org/10.1016/j.envexpbot.2004.10.005
  15. FIocco, C. G., M. P. Carranza, L. G. Carvajal, R. M. Loewy, A. M. Pechen de Dangelo, and A. M. Giulietti. 2004. Removal of azinphos methyl by alfalfa plants (Medicago sativa L.) in a soil-free system. Sci. Total Environ. 327: 31-39 https://doi.org/10.1016/j.scitotenv.2003.08.024
  16. Garcia, G., A. Faz, and M. Cunha. 2004. Performance of Piptatherum miliaceum(Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int. Biodeter. Biodegr. 54: 245-250 https://doi.org/10.1016/j.ibiod.2004.06.004
  17. Ghosh, M. and S. P. Singh. 2005. A review on phytoremediation of heavy metal and utilization of its byproducts. Appl. Ecol. Eniviron. Res. 3: 1-18
  18. Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Miccrobiol. 41: 533-536 https://doi.org/10.1139/m95-070
  19. Huang, X. D., El-Alawi, Y., Penrose, D. M., Glick, B. R., and Greenberg. B. M. 2004. A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut. 130: 465-76 https://doi.org/10.1016/j.envpol.2003.09.031
  20. Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B. M. Greenberg. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 91: 139-147
  21. Jankong, P., P. Visoottiviseth, and S. Khokiattiwong. 2007. Enhanced phytoremediation of arsenic contaminated land. Chemosphere 68: 1906-1912 https://doi.org/10.1016/j.chemosphere.2007.02.061
  22. Johnson, D. L., D. R. Anderson, and S. P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAR contaminated soil. Soil BioI. Biochem. 37: 2334-2336 https://doi.org/10.1016/j.soilbio.2005.04.001
  23. Joner, E. J., D. Hirmann, O. Szolar, H. J. Todorovic, D. C. Leyval, and A. P. Loibner. 2004. Priming effects on PAR degradation and ecotoxicity during a phytoremediation experiment. Environ. Pollut. 128: 429-435 https://doi.org/10.1016/j.envpol.2003.09.005
  24. Kechavarzi, C., K. Pettersson, P. Leeds-Harrison, L. Ritchie, and S. Ledin. 2007. Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ. Pollut. 145: 68-74 https://doi.org/10.1016/j.envpol.2006.03.039
  25. Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crop: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194: 65-79 https://doi.org/10.1023/A:1004260222528
  26. Kim, J. Y. and K. S. Cho. 2006. Bioremediation of oil-contaminated soil using rhizobacteria and plant. Kor. J. Microbiol. Biotechnol. 34: 185-195
  27. Kloepper, J. W., A. Gutierrwz-estrada and J. A. Mclnroy. 2007. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53:159-167 https://doi.org/10.1139/W06-114
  28. Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2007. Interactions between a plant growth-promoting rhizobacterium an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35:480--487 https://doi.org/10.1016/j.apsoil.2006.10.006
  29. Komarek, M., P. Tluatos, J. Szakova, V. Chrastny, and V. Ettler. 2007. The use of maize and poplar in chelant-enhanced phytoextractionof lead from contaminated agricultural soil. Chemosphere 67: 640-651 https://doi.org/10.1016/j.chemosphere.2006.11.010
  30. Koo, S. Y. and K. S. Cho. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metalcontaminated soil. Kor. J. Microbiol. Biotechnol. 2: 83-93
  31. Li, J. and R. J. Kremer. 2006. Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol. Control 39: 58-65 https://doi.org/10.1016/j.biocontrol.2006.04.016
  32. Liste, H. and D. Felgentreu. 2006. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31: 43-52 https://doi.org/10.1016/j.apsoil.2005.04.006
  33. Macek, T. M. and J. Kas. 2000. Exploitation of plants for the removal of organics in environmental remediation(research review paper). Biotechnol. Adv. 18: 23-34 https://doi.org/10.1016/S0734-9750(99)00034-8
  34. Mackova, M., B. Vrchotova, K. Francova, M. Sylvestre, M. Tomaniova, P. Lovecka, K. Demnerova, and T. Macek. 2007. Biotransformation of PCBs by plants and bacteriaconsequences of plant-microbe interactions. Eur. J. Soil Biol. 43: 233-241 https://doi.org/10.1016/j.ejsobi.2007.02.006
  35. Meers, E., B. Vandecasteele, A. Ryttens, J. Vangronsveld, and F. M. G. Track., 2007. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Enviromental and Experimental Botany 60: 57-68 https://doi.org/10.1016/j.envexpbot.2006.06.008
  36. Mena-Violante, H. G. and V. Olalde-Portuga, 2007. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic-amsterdam (In press)
  37. Muratova, A. Y., O. V. Turkovskaya, L. P. Antonyuk, O. E. Makarov, L. I. Pozdnyakova, and V. V. Ignatov. 2005. Oiloxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology. 74: 210-215 https://doi.org/10.1007/s11021-005-0053-4
  38. Nakamura, T., T. Motoyama, Y. Suzuki, and I. Suzuki. 2004. Biotransformation of pentachlorophenol by Chinese chive and a recombinant derivative of its rhizosphere-competent microorganism Pseudomonas gladioli M-2196. Soil Biol. Biochem. 36: 787-795 https://doi.org/10.1016/j.soilbio.2004.01.006
  39. Narasimhan, K., C. V. Basheer, B. Bajic, and S. Swamp. 2003. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol. 132: 146-53 https://doi.org/10.1104/pp.102.016295
  40. NeW, D. B., S. J. Allen, and J. F. Brown. 1996. Deleterious rhizosphere bacteria an intergrating perspective(review). Appl. Soil Ecol. 5: 1-20 https://doi.org/10.1016/S0929-1393(96)00124-2
  41. Nichols, T. D., D. C. Wolf, H. B. Roger, C. A. Beyrouty, and C. M. Reynold. 1997. Rhizosphere microbial populations in contaminated soils. Water Ai, and Soil Pollut. 95: 165-168
  42. Orhan, E. A. E., S. Ercisli, M. Turan, and F. Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic-amsterdam 111: 38-43 https://doi.org/10.1016/j.scienta.2006.09.002
  43. Palmroth, M. R., J. Pichtel, and J. A. Puhakka. 2002. Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresoure Technol. 84: 221-228 https://doi.org/10.1016/S0960-8524(02)00055-X
  44. Pradhan, S. P., J. R. Conrad, J. R. Paterek, and V. J. Srivastava. 1998. Potential of phytoremediation for treatment of PARs in soil at MPG sites. J. Soil Contamination 7: 467-480 https://doi.org/10.1080/10588339891334401
  45. Santos, F. S., J. Hernandez-Allica, J. M. Becerril, N. Amaral-Sobrinho, N. Mazur, and C. Garbisu. 2006. Chelateinduced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65: 43-50 https://doi.org/10.1016/j.chemosphere.2006.03.012
  46. Schnoor, J. L., L. A. Licht, S. C. McCutcheon, N. L. Wolfe, and L. H. Carreira. 1995. Phytoremediation of organic and nutrient contaminats. Environ. Sci. Technol. 29: 318-323 https://doi.org/10.1021/es00007a002
  47. Schnoor, J. L. 1997. Phytoremediation. Technology evaluation report, pp.8-18. Ground-Water Remediation Technologies Analysis Center, Iowa, U.S.A
  48. Shaharoona, B., M. Arshad, and A. Khilid. 2007. Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. J. Microbiol. 45: 15-20
  49. Shimp, J. F., J. C. Tracy, L. C. Davis, E. Lee, W. Huang, L. E. Erickson, and J. L. Schnoor. 1993. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic meterials. Envoron. Sci. Technol. 23: 41-77 https://doi.org/10.1080/10643389309388441
  50. Tesar, M., T. G. Reichenauer, and A. Sessitsch. 2002. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil BioI. Biochem. 34: 1883-1892 https://doi.org/10.1016/S0038-0717(02)00202-X
  51. Thomas F. C., Chin-A-Woeng, W. Priester, A. J. Bij, and B. J. J. Lugtenberg. 1997. Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas jluorescens biocontrol strain WCS365 using scanning electron microscopy. Mol. Plant Microbe. In. 10:79-86 https://doi.org/10.1094/MPMI.1997.10.1.79
  52. Wu, S. C., K. C. Cheung, Y. M. Luo, and M. H. Wong. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pollut. 140: 124-35 https://doi.org/10.1016/j.envpol.2005.06.023
  53. Wyrzykowska, B., N. Hanari, A. Orlikowska, I. Bochentin, P. Rostkowski, J. Falandysz, S. Taniyasu, Y. Horii, Q. Jiang, and N. Yamashita. 2007. Polychlorinated biphenyls and -naphthalenes in pine needles and soil from Poland-Concentrations and patterns in view of long-term environmental monitoring. Chemosphere 67: 1877-1886 https://doi.org/10.1016/j.chemosphere.2006.05.078
  54. Xu, S. Y., Y. X. Chen, W. X. Wu, K. X. Wang, Q. Lin, and X. Q. Liang. 2006. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci. Total Environ. 363: 206-215 https://doi.org/10.1016/j.scitotenv.2005.05.030
  55. Zaidi, S., S. Usmani, B. R. Singh, and J. Musarrat. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997 https://doi.org/10.1016/j.chemosphere.2005.12.057
  56. Zakia, D., M. Parrish, B. Katherine, and A. P. Schwab. 2005. Effect of Root Death and Decay on Dissipation of Polycyclic Aromatic Hydrocarbons in the Rhizosphere of Yellow Sweet Clover and Tall Fescue. Bioremediation and Biodegradation 34: 207-216
  57. Zhuang, X., J. Chen, H. Shim, and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ. Int. 33: 406-413 https://doi.org/10.1016/j.envint.2006.12.005