3,4-Dichloroaniline 분해 미생물의 분리 및 특성

Isolation and Characterization of 3,4-Dichloroaniline Degrading Bacteria

  • Kim, Young-Mog (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Park, Kun-Ba-Wui (South Sea Fisheries Research Institute, National Fisheries Research & Development Institute) ;
  • Kim, Won-Chan (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Han, Won-Sub (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Yu, Choon-Bal (Department of Food Engineering, Daegu University) ;
  • Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University)
  • 발행 : 2007.09.28

초록

토양 시료를 대상으로 3.4-dichloroaniline (DCA)를 함유한 최소배지에서의 집식배양과 배양 후 HPLC에 의한 잔류분석을 통해 3,4-DCA의 분해 능력이 우수한 균주 Pseudomonas sp. KB35B를 분리하였다. 분리균 KB35B는 1/10 LB배지에 함유된 50 ppm의 3,4-DCA를 12시간만에 완전히 제거하였다. 이외에도 분리균 KB35B는 3-chloroaniline (CA), 4-CA 및 2,4-DCA의 분해 활성을 나타내었으나 2,5-DCA와 3,5-DCA에 대한 분해활성을 가지고 있지는 않았다. 또한, 분리균 KB35B에서 3,4-DCA의 유도에 의한 catechol 2,3-dioxygenase 활성의 증가가 관찰되었다. 이상의 결과로부터 catechol 2,3-dioxygenase이 3,4-DCA 분해에 관여하는 중요한 효소군중의 하나로 생각된다.

Chloroanilines are widely used in the production of dyes, drugs and herbicides. Chloroanilines, however, are considered potential pollutants due to their toxic and recalcitrant properties to humans and other species. With the increase of necessity of bioremediation, this study was conducted to isolate the chloroanilines-degrading bacteria. A bacterium capable of growth on 3,4-dichloroaniline (DCA) was isolated by the 3,4-DCA-containing enrichment culture. The strain KB35B was identified as Pseudomonas sp. and also able to degrade several chloroanilines. The isolated strain showed high level of catechol 2,3-dioxygenase activity in the presence of 3,4-DCA. The activity of catecho1 2,3-dioxygenase was supposed to be ones of the important factors for 3,4-DCA degradation. The activity toward 4-methykatechol was 60.6% of that of catechol, while the activity toward 3-methylcatechol and 4-chlorocatechol were 27.0 and 13.5%, respectively.

키워드

참고문헌

  1. Aoki, K., K. Konohana, R. Shinke, and H. Nishira. 1984. Purification and characterization of catechol 1,2-dioxygenase from aniline-assimilating Rhodococcus erythropolis AN-13. Agric. Biol. Chem. 48: 2087-2095 https://doi.org/10.1271/bbb1961.48.2087
  2. Dunbar, J., L. O. Ticknor, and C. R. Kuske. 2000 Assessment of Microbiol diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Envir Microbiol. 66: 2943-2950 https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  3. Gheewala, S. H. and A. P. Annachhatre 1997. Biodegradation of aniline. Water Sci. Technol. 36: 53-63
  4. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmid. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  5. Harayama, S. and M. Rekik. 1990. The rnata clevage operon of TOL degradative plasmid pWWO comprised 13 gene. Mol. Gen. Genet. 221: 113-120 https://doi.org/10.1007/BF00280375
  6. Hofer, B., S. Backhaus, and K. N. Timmis. 1994. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB4000 encodes four additional metabolic enzymes. Gene 144: 9-16 https://doi.org/10.1016/0378-1119(94)90196-1
  7. Kearny, P. C. and D. D. Kaufman. 1975. In: Herbicides: Chemistry. Degradation and Mode of action. Marcel Dekker, New York
  8. Lee, J. S., E. J. Kang, M. O. Kim, D. H. Lee, K. S. Bae, and C. K. Kim 2001. Identification of Yarrowia lipolytica Y103 and its degradability of phenol and 4-chlorophenol. J. Microbiol. Biotechnol. 11: 112-117
  9. Liu, Z., H. Yang, Z. Huang, P. Zhou, and S. J. Liu. 2002. Degradation of aniline by newly isolated, extremely anilinetolerant Delftia sp. AN3. Appl. Microbiol. Biotechnol. 58: 679-682 https://doi.org/10.1007/s00253-002-0933-8
  10. Motonaga, K., K. Tagagi, and S. Matumoto. 1996. Biodegradation of chlorothalonil in soil after suppression of degradation. BioI. Fertil. Soils 23: 340-345 https://doi.org/10.1007/BF00335964
  11. Na, K., S. Kim, M. Kubo, and S. Chung. 2001. Cloning and phylogenetic analysis of two diferent bphC genes and bphD gene from PCB-degrading bacterium, Pseudomonas sp. strain SY5. J. Microbiol. Biotechnol. 11: 668-676
  12. Nakanishi, Y, S. Murakami, R. Shinke, and K. Aoki. 1991. Induction, purification, and characterization of catechol 2,3-dioxygenase from aniline-assimilating Pseudomonas sp. FK8-2. Agric. BioI. Chem. 55: 1281-1289 https://doi.org/10.1271/bbb1961.55.1281
  13. Park, D. W., J. H. Lee, D. H. Lee, K. Lee, and C. K. Kim. 2003. Sequence characteristics of xyl JQK genes reponsible for catechol degradation in benzoate-catabolizing Pseudomonas sp. S-47. J. Microbiol. Biotechnol. 13: 700-705
  14. Radianingtyas, H., G K. Robinson, and A. T. Bull. 2003. Characterization of a soil-derived bacterial consortium degrading 4-chloroaniline. Microbiology 149: 3279-3287 https://doi.org/10.1099/mic.0.26303-0
  15. Sambrook, L, E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning, a laboratory maual. 2nd ed. cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  16. Sutherland, T. D., I. Home, M. J. Lacey, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott. 2000. Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66: 2822-2828 https://doi.org/10.1128/AEM.66.7.2822-2828.2000
  17. Tixier, C, M. Sancelme, S. Ait-Aissa, F. Bonnemoy, A. Cuer, N. Truffaut, and H. Veschambre. 2002. Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46: 519-526 https://doi.org/10.1016/S0045-6535(01)00193-X
  18. Travkin, V. M., I. P. Solyanikova, l. M.Rietjens, J. Vervoort, W. J. Berkel, and L. A. Golovleva. 2003. Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas jluorescens 26-K. J. Environ. Sci. Health. 38: 121-132 https://doi.org/10.1081/PFC-120018443
  19. Uozurni, T., T. Hoshino, K. Miwa, S. Horinouchi, T. Beppu, and K. Arima. 1977. Restriction and modification in Bacillus species. Genetic transformation of bacteria with DNA from different species. Part I. Mol. Gen. Genet. 152: 525-538