참고문헌
- Benvenisti, L., S. Koby, A. Rutman, H. Giladi, T. Yura, and A. B. Oppenheim. 1995. Cloning and primary sequence of the rpoH gene from Pseudomonas aeruginosa. Gene 155: 73-76 https://doi.org/10.1016/0378-1119(94)00829-H
- Bibb, M. J., P. R. Findlay, and M. W. Johnson. 1984. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30: 157-16 https://doi.org/10.1016/0378-1119(84)90116-1
- Bukau, B. 1993. Regulation of the Escherichia coli heatshock response. Mol. Microbiol. 9: 671-680 https://doi.org/10.1111/j.1365-2958.1993.tb01727.x
- Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16: 6127-6145 https://doi.org/10.1093/nar/16.13.6127
- Eom, C. Y, S. T. Park, E. Kim, Y. T. Ro, S. W. Kim and Y M. Kim. 2002. Cloning, molecular characterization, and transcriptional analysis of dnaK operon in a methylotrophic bacterium Methylovorus sp. strain SSI DSM 11726. Mol. Cells. 14: 245-254
- Eom, C. Y, E. Kim, Y. T. Ro, S. W. Kim, and Y M. Kim. 2005. Cloning and molecular characterization of groESL heat-shock operon in a methylotrophic bacterium Methylovarus sp. strain SS I DSM 11726. J. Biochem. Mol. Biol. 38: 695-702
-
Gamer, J., G Multhaup, T. Tomoyasu, J. S. McCarty, S. Rudiger, H. J. Schonfeld, C. Schirra, H. Bujard, and 8. Bukau. 1996. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor
${\sigma}^{32}$ . EMBO J. 15: 607-617 - Georgopoulos, C., K. Liberek, M. ZyIicz, and D. Ang. 1994. Properties of heat shock proteins of Escherichia coli. and the autoregulation of the heat shock response. In: Morimoto, R. I., A. Tissires and C. Georgopoulos (eds): The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp 209-249
- Goldberg, J. B., and D. E. Ohman. 1984. Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J. Bacteriol. 158:1115-1121
- Gross, C. A., D. B. Straus, J. W. Erickson, and T. Yura. 1990. The function and regulation of heat shock proteins in Escherichia coli. In: Morimoto, R. I, A. Tissires and C. Georgopoulos (eds): Stress proteins in biology and medicine, Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, pp 167-189
-
Grossman, A. D., D. B. Strauss, W. A. Walter, and C. A. Gross. 1987.
${\sigma}^{32}$ synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1: 179-184 https://doi.org/10.1101/gad.1.2.179 - Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
- LaemmIi, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Lidstrom, M. E. and Stirling, D, I. 1990. Methylotrophs: genetics and commercial applications. Annu. Rev. Microbiol. 44: 27-58 https://doi.org/10.1146/annurev.mi.44.100190.000331
- Morimoto, R. I., A. Tissires, and C. Georgopoulos. 1994. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press. New York. Cold Spring Harbor. pp 610
-
Nagai, H., H. Yuzawa, and T. Yura. 1991. Interplay of two cis-acting mRNA regions in translational control of
${\sigma}^{32}$ synthesis during the heat shock response of Escherichia coli. Proc. Natl. Acad. Sci. USA 88: 10515- 10519 -
Nagai, H., H. Yuzawa, M. Kanemori, and T. Yura. 1994. A distinct segment of the
${\sigma}^{32}$ polypeptide is involved in DnaKmediated negative control of the heat shock response in Escherichia coli. Proc. Natl. Acad. Sci. USA 91: 10280- 10284 - Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbour Laboratory, Cold Spring harbour. NY
- Schumann, W. 1996. Regulation of the heat shock response in Escherichia coli and Bacillus subtilis. J. Biosci. 21: 133-148 https://doi.org/10.1007/BF02703104
- Sprengart, M. L., H. P. Fatscher, and E. Fuchs. 1990. The initiation of translation in E. coli: apparent base pairing between the 16S rRNA and downstream sequences of the mRNA. Nucleic Acids Res. 18: 1719-1723 https://doi.org/10.1093/nar/18.7.1719
-
Straus, D. B., W. A. Walter, and C. A. Gross. 1987. The heat shock response of E. coli is regulated by changes in the concentration of
${\sigma}^{32}$ . Nature 329: 348-351 https://doi.org/10.1038/329348a0 -
Straus, D. B., W. A. Walter, and C. A. Gross. 1989. The activity of
${\sigma}^{32}$ is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev. 3: 2003-2010 https://doi.org/10.1101/gad.3.12a.2003 -
Tilly, K., J. Spence, and C. Georgopoulos. 1989. Modulation of stability of the Escherichia coli heat shock regulatory factor
${\sigma}^{32}$ . J Bacteriol. 171: 1585-1589 https://doi.org/10.1128/jb.171.3.1585-1589.1989 - Wsten, M. M. 1998. Eubacterial sigma-factors. FEMS Microbiol. Rev. 22: 127-150 https://doi.org/10.1016/S0168-6445(98)00011-4
- Yamarnori, T., and T. Yura. 1982. Genetic control of heatshock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 79: 860-864
- Yura, T., H. Nagai, and H. Mori. 1993. Regulation of the heat-shock response in bacteria. Annu. Rev. Microbiol. 47: 321-350 https://doi.org/10.1146/annurev.mi.47.100193.001541
- Yuzawa, H., H. Nagai, H. Mori, and T. Yura. 1993. Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli. Nucleic Acids Res. 21: 5449-5455 https://doi.org/10.1093/nar/21.23.5449
-
Zhou, Y. -N., N. Kusukawa, J. W. Erickson, C. A. Gross, and T. Yura. 1988. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor
${\sigma}^{32}$ . J. Bacteriol. 170: 3640-3649 https://doi.org/10.1128/jb.170.8.3640-3649.1988