Molecular Characterization of FprB (Ferredoxin-$NADP^+$ Reductase) in Pseudomonas putida KT2440

  • Lee, Yun-Ho (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Yeom, Jin-Ki (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kang, Yoon-Suk (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Ju-Hyun (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Sung, Jung-Suk (Department of Life Science, Dongguk University) ;
  • Jeon, Che-Ok (Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University) ;
  • Park, Woo-Jun (Division of Environmental Science and Ecological Engineering, Korea University)
  • Published : 2007.09.30

Abstract

The fpr gene, which encodes a ferredoxin-$NADP^+$ reductase, is known to participate in the reversible redox reactions between $NADP^+$/NADPH and electron carriers, such as ferredoxin or flavodoxin. The role of Fpr and its regulatory protein, FinR, in Pseudomonas putida KT2440 on the oxidative and osmotic stress responses has already been characterized [Lee at al. (2006). Biochem. Biophys. Res. Commun. 339, 1246-1254]. In the genome of P. putida KT2440, another Fpr homolog (FprB) has a 35.3% amino acid identity with Fpr. The fprB gene was cloned and expressed in Escherichia coli. The diaphorase activity assay was conducted using purified FprB to identify the function of FprB. In contrast to the fpr gene, the induction of fprB was not affected by oxidative stress agents, such as paraquat, menadione, $H_2O_2$, and t-butyl hydroperoxide. However, a higher level of fprB induction was observed under osmotic stress. Targeted disruption of fprB by homologous recombination resulted in a growth defect under high osmotic conditions. Recovery of oxidatively damaged aconitase activity was faster for the fprB mutant than for the fpr mutant, yet still slower than that for the wild type. Therefore, these data suggest that the catalytic function of FprB may have evolved to augment the function of Fpr in P. putida KT2440.

Keywords

References

  1. Abranches, J., J. A. Lemos, and B. A. Burne. 2006. Osmotic stress responses of Streptococcus mutas UA159. FEMS Microbiol. Lett. 255: 240-246 https://doi.org/10.1111/j.1574-6968.2005.00076.x
  2. Bittel, C., L. C. Tabares, M. Armesto, N. Carrillo, and N. Cortez. 2003. The oxidant-responsive diaphorease of Rhodobacter capsulatus in a ferredoxin (flavodoxin)-NADP(H) reductase. FEBS Lett. 553: 408-412 https://doi.org/10.1016/S0014-5793(03)01075-5
  3. Bremer, E. and R. Krämer. 2000. Coping with osmotic challenges: Osmoregulation through accumulation and release of compatible solutes in bacteria, pp. 79-97. In G. Storz and R. Hengge-Aronis (eds.), Bacterial Stress Responses. ASM Press, Washington DC
  4. Carrillo, N. and E. A. Ceccarelli. 2003. Open questions in ferredoxin-$NADP^+$ reductase catalytic mechanism. Eur. J. Biochem. 270: 1900-1915 https://doi.org/10.1046/j.1432-1033.2003.03566.x
  5. Ceccarelli, E. A., A. K. Arakaki, N. Cortez, and N. Carrillo. 2004. Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductase. Biochim. Biophys. Acta 1698: 155-165 https://doi.org/10.1016/j.bbapap.2003.12.005
  6. Cheung, K. J., V. Badarinarayana, D. W. Selinger, D. Janes, and G. A. Church. 2003. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res. 13: 206-215 https://doi.org/10.1101/gr.401003
  7. Cho, Y. H., E. J. Lee, and J. H. Roe. 2000. A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor. Mol. Microbiol. 35: 150-160 https://doi.org/10.1046/j.1365-2958.2000.01685.x
  8. Djaman, O., F. W. Outten, and J. A. Imlay. 2004. Repair of oxidized iron-sulfur cluster in Escherichia coli. J. Biol. Chem. 279: 44590-44599 https://doi.org/10.1074/jbc.M406487200
  9. Fischer, F., D. Raimondi, A. Aliverti, and G. Zanetti. 2002. Mycobacterium tuberculosis FprA, a novel bacterial NADPHferredoxin reductase. Eur. J. Biochem. 269: 3005-3013 https://doi.org/10.1046/j.1432-1033.2002.02989.x
  10. Giro, M., N. Carrillo, and A. R. Krapp. 2006. Glucose-6- phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli. Microbiology 152: 1119-1128 https://doi.org/10.1099/mic.0.28612-0
  11. Greenberg, J., P. Monach, J. Chou, D. Josepphy, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 6181- 6185
  12. Griffith, K. L. and R. E. Wolf. 2001. Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: Identifying nucleotides required for DNA binding and transcription activation. Mol. Microbiol. 40: 1141-1154 https://doi.org/10.1046/j.1365-2958.2001.02456.x
  13. Hoffmann, T., A. Schutz, M. Brosius, A. Volker, U. Volker, and E. Bremer. 2002. High-salinity-induced iron limitation in Bacillus subtilis. J. Bacteriol. 184: 718-727 https://doi.org/10.1128/JB.184.3.718-727.2002
  14. Hopper, D., J. Bernhardt, and M. Hecker. 2006. Salt stress adaptation of Bacillus subtilis: A physiological proteomics approach. Proteomics 6: 1550-1562 https://doi.org/10.1002/pmic.200500197
  15. Imlay, J. A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57: 395-418 https://doi.org/10.1146/annurev.micro.57.030502.090938
  16. Jeong, E., K. Park, S. Y. Yi, H. Kang, S. J. Chung, C. Lee, J. W. Chung, D. Seol, B. H. Chung, and M. Kim. 2007. Stress-governed expression and purification of human type II hexokinase in Escherichia coli. J. Microbiol. Biotechnol. 17: 638-643
  17. Kalogeraki, V. S. and S. C. Winans. 1997. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188: 69-75 https://doi.org/10.1016/S0378-1119(96)00778-0
  18. Kang, Y.-S., Y. J. Kim, C. O. Jeon, and W. Park. 2006. Characterization of naphthalene-degrading Pseudomonas species isolated from pollutant-contaminated sites: Oxidative stress during their growth on naphthalene. J. Microbiol. Biotechnol. 16: 1819-1825
  19. Krapp, A. R., T. B. Tognetti, N. Carrillo, and A. Acevedo. 1997. The role of ferredoxin-NADP+ reductase in the concerted cell defense against oxidative damage - studies using Escherichia coli mutants and cloned plant genes. Eur. J. Biochem. 249: 556-563 https://doi.org/10.1111/j.1432-1033.1997.00556.x
  20. Lee, Y., E. Ahn, S. Park, E. L. Madsen, C. O. Jeon, and W. Park. 2006. Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J. Microbiol. Biotechnol. 16: 386-390
  21. Lee, Y., S. Pena-Llopis, Y. S. Kang, H. D. Shin, B. Demple, E. L. Madsen, C. O. Jeon, and W. Park. 2006. Expression analysis of the fpr (ferredoxin-$NADP^+$ reductase) gene in Pseudomonas putida KT2440. Biochem. Biophys. Res. Commun. 339: 1246-1254 https://doi.org/10.1016/j.bbrc.2005.11.135
  22. Li, Z. and B. Demple. 1996. Sequence specificity for DNA binding by Escherichia coli SoxS and Rob proteins. Mol. Microbiol. 20: 937-945 https://doi.org/10.1111/j.1365-2958.1996.tb02535.x
  23. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  24. Oka, A., H. Sugisaki, and M. Takanami. 1981. Nucleotide sequence of the kanamycin resistance transposon Tn903. J. Mol. Biol. 147: 217-226 https://doi.org/10.1016/0022-2836(81)90438-1
  25. Pane-Farre, J., B. Jonas, K. Forstner, S. Engelmann, and M. Hecker. 2006. The $\sigma$B regulon in Staphylococcus aureus and its regulation. Int. J. Med. Microbiol. 296: 237-258 https://doi.org/10.1016/j.ijmm.2005.11.011
  26. Park, W., S. Pena-Llopis, Y. Lee, and B. Demple. 2006. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli. Biochem. Biophys. Res. Commun. 341: 51-56 https://doi.org/10.1016/j.bbrc.2005.12.142
  27. Philippe, N., J. P. Alcaraz, E. Coursange, J. Geiselmann, and D. Schneider. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51: 246-255 https://doi.org/10.1016/j.plasmid.2004.02.003
  28. Seo, D. and H. Sakurai. 2002. Purification and characterization of ferredoxin-NAD(P)+ reductase from the green sulfur bacterium Chlorobium tepidum. Biochim. Biophys. Acta 1597: 123-132 https://doi.org/10.1016/S0167-4838(02)00269-8
  29. Smirnova, G. V., N. G. Muzyka, and O. N. Oktyabrsky. 2000. The role of antioxidant enzymes in response of Escherichia coli to osmotic upshift. FEMS Microbiol. Lett. 186: 209-213 https://doi.org/10.1111/j.1574-6968.2000.tb09106.x
  30. Wackett, L. P. 2003. Pseudomonas putida - a versatile biocatalyst. Nature Biotechnol. 21: 136-138 https://doi.org/10.1038/nbt0203-136
  31. Yin, S., M. Fuangthong, W. P. Laratta, and J. P. Shapleigh. 2003. Use of a green fluorescent protein-based reporter fusion for detection of nitric oxide produced by denitrifiers. Appl. Environ. Microbiol. 69: 3938-3944 https://doi.org/10.1128/AEM.69.7.3938-3944.2003
  32. Yu, T. S. 2005. Purification and characterization of pyrimidine nucleotide N-ribosidase from Pseudomonas oleovorans. J. Microbiol. Biotechnol. 15: 573-578