Isolation and Characterization of Strain of Bacillus thuringiensis subsp. kenyae Containing Two Novel cry1-Type Toxin Genes

  • Choi, Jae-Young (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Li, Ming Shun (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Shim, Hee-Jin (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Roh, Jong-Yul (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Woo, Soo-Song (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University) ;
  • Boo, Kyung-Saeng (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • Published : 2007.09.30

Abstract

To identify novel crystal proteins, Bacillus thuringiensis 2385-1 was isolated from Korean soil samples and characterized. The H-serotype of 2385-1 was identical to that of subsp. kenyae (H4a4c), and its crystal toxin was bipyramidal-shaped. However, 2385-1 showed a much higher toxicity towards Plutella xylostella and Spodoptera exigua larvae than subsp. kenyae. In addition, the crystal protein profile and plasmid DNA pattern of 2385-1 differed from those of subsp. kenyae. To verify the crystal protein gene types of 2385-1, a PCR-RFLP analysis was performed, and the results revealed that 2385-1 contained two novel cry1-type crystal protein genes, cryl-5 and cry1-12, in addition to the crylJal gene. The deduced amino acid sequences of cryl-5 and cry1-12 showed a 97.9% and 75.7% sequence similarity with the CrylAb and CrylJa crystal proteins, respectively. Among the novel crystal proteins, Cry1-5 showed a high toxicity towards P. xylostella and S. exigua larvae. In conclusion, B. thuringiensis 2385-1 is a new isolate in terms of its gene types, and should be a promising source for an insecticide to control lepidopteran larvae.

Keywords

References

  1. Ballester, V., F. Granero, B. E. Tabashnik, T. Malvar, and J. Ferr . 1999. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 65: 1413-1419
  2. Ballester, V., F. Granero, R. A. de Maagd, D. Bosch, J. L. Mensua, and J. Ferr . 1999. Role of Bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Appl. Environ. Microbiol. 65: 1900-1903
  3. Boucias, D. G. and J. C. Pendland. 1998. Principles of Insect Pathology. Kluwer Academic Publishers, Boston
  4. Chambers, J. A., A. Jelen, M. P. Gilbert, C. S. Jany, T. B. Johnson, and C. Gawron-Burke. 1991. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J. Bacteriol. 173: 3966-3976 https://doi.org/10.1128/jb.173.13.3966-3976.1991
  5. Chang, J. H., J. Y. Choi, B. R. Jin, J. Y. Roh, J. A. Olszewski, S. J. Seo, D. R. O'Reilly, and Y. H. Je. 2003. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invertebr. Pathol. 84: 30-37 https://doi.org/10.1016/S0022-2011(03)00121-6
  6. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D. H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813
  7. Escriche, B., J. Ferr , and F. J. Silva. 1997. Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CryIA from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 27: 651-656 https://doi.org/10.1016/S0965-1748(97)00039-8
  8. Ferre, J., M. D. Real, J. van Rie, S. Jansens, and M. Peferoen. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88: 5119-5123
  9. Fitch, W. M. 1971. Toward defining the course of evolution: Minimal change for a specific tree topology. Syst. Zool. 20: 406-416 https://doi.org/10.2307/2412116
  10. Haider, M. Z. and D. J. Ellar. 1989. Functional mapping of an entomocidal $\delta$-endotoxin. Single amino acid changes produced by site-directed mutagenesis influence toxicity and specificity of the protein. J. Mol. Biol. 208: 183-194 https://doi.org/10.1016/0022-2836(89)90094-6
  11. Herrero, S., J. Gonzalez-Cabrera, B. E. Tabashnik, and J. Ferre. 2001. Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins. Appl. Environ. Microbiol. 67: 5729-5734 https://doi.org/10.1128/AEM.67.12.5729-5734.2001
  12. Horak, P., J. Weiser, and L. M. Scaron. 1996. The effect of Bacillus thuringiensis M-exotoxin on trematode cercariae. J. Invertebr. Pathol. 68: 41-49 https://doi.org/10.1006/jipa.1996.0056
  13. Je, Y. H., B. R. Jin, H. W. Park, J. Y. Roh, J. H. Chang, S. J. Seo, J. A. Olszewski, D. R. O'Reilly, and S. K. Kang. 2003. Baculovirus expression vectors that incorporate the foreign protein into viral occlusion bodies. Biotechniques 34: 81-87
  14. Je, Y. H., J. H. Chang, J. Y. Roh, and B. R. Jin. 2001. Generation of baculovirus expression vector using defective Autographa californica nuclear polyhedrosis virus genome maintained in Escherichia coli for $Occ^+$ virus production. Int. J. Indust. Entomol. 2: 155-160
  15. Johnson, C., A. H. Bishop, and C. L. Turner. 1998. Isolation and activity of strain of Bacillus thuringiensis toxic to larvae of the housefly (Diptera: Muscidae) and tropical blowflies (Diptera: Calliphoridae). J. Invertebr. Pathol. 71: 138-144 https://doi.org/10.1006/jipa.1997.4720
  16. Juarez-Perez, V. M., M. D. Ferrandis, and R. Froutos. 1997. PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl. Environ. Microbiol. 63: 2997-3002
  17. Jung, S.-Y., J-H. Lee, Y.-G.. Chai, and S.-J. Kim. 2005. Monitoring of microorganisms added into oil-contaminated microenvironments by terminal-restriction fragment length polymorphism analysis. J. Microbiol. Biotechnol. 15: 1170-1177
  18. Kim, J. S., J. Y. Choi, J. H. Chang, H. J. Shim, J, Y. Roh, B. R. Jin, and Y. H. Je. 2005. Characterization of an improved recombinant baculovirus producing polyhedra that contain Bacillus thuringiensis Cry1Ac crystal protein. J. Microbiol. Biotechnol. 15: 710-715
  19. Kim, J. S., J. Y. Choi, J. Y. Roh, H. Y. Lee, S. S. Jang, and Y. H. Je. 2007. Production of recombinant polyhedra containing Cry1Ac fusion protein in insect cell lines. J. Microbiol. Biotechnol. In press
  20. Kuo, W. S. and K. F. Chak. 1996. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol. 62: 1369-1377
  21. Laurent, P., H. Ripouteau, V. C. Dumanoir, E. Frachon, and M. M. Lecadet. 1996. A micromethod for serotyping Bacillus thuringiensis. Lett. Appl. Microbiol. 22: 259-261 https://doi.org/10.1111/j.1472-765X.1996.tb01156.x
  22. Li, J., J. Carroll, and D. J. Ellar. 1991. Crystal structure of insecticidal $\delta$-endotoxin from Bacillus thuringiensis at 2.5 $\AA$ resolution. Nature 353: 815-821 https://doi.org/10.1038/353815a0
  23. Li, M. S., Y. H. Je, I. H. Lee, J. H. Chang, J. Y. Roh, H. S. Kim, H. W. Oh, and K. S. Boo. 2002. Isolation and characterization of a strain of Bacillus thuringiensis ssp. kurstaki containing a new $\delta$-endotoxin gene. Curr. Microbiol. 45: 299-302 https://doi.org/10.1007/s00284-002-3755-0
  24. Li, M. S., J. Y. Choi, J. Y. Roh, H. J. Shim, J. N. Kang, Y. Kim, Y. Wang, Z. N. Yu, B. R. Jin, and Y. H. Je. 2007. Identification of molecular characterization of novel cry1- type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J. Microbiol. Biotechnol. 17: 15-20
  25. Martin, P. A. W. and R. S. Travers. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442
  26. Masson, L., W. J. Moar, K. van Frankenhuyzen, M. Bosse, and R. Brousseau. 1992. Insecticidal properties of a crystal protein gene product isolated from Bacillus thuringiensis subsp. kenyae. Appl. Environ. Microbiol. 58: 642-646
  27. Ohba, M. and K. Aizawa. 1978. Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan. J. Invertebr. Pathol. 32: 303-309 https://doi.org/10.1016/0022-2011(78)90193-3
  28. Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 560-570
  29. Russell, R. M., J. L. Robertson, and S. E. Sauvin. 1977. POLO: A new computer program for probit analysis. Bull. Entomol. Soc. Am. 23: 209-213
  30. Sambrook, J., E. F. Fritsch, and T. M. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York
  31. Swofford, D. L. 1998. PAUP* (Phylogenetic Analysis Using Parsimony and Other Methods*). Version 4. Sinauer Associates, Sunderland
  32. Tabashnik, B. E., K. W. Johnson, J. T. Engleman, and J. A. Baum. 2000. Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet. J. Invertebr. Pathol. 76: 81-83 https://doi.org/10.1006/jipa.2000.4941
  33. Thomas, W. E. and D. J. Ellar. 1983. Bacillus thuringiensis var israelensis crystal $\delta$-endotoxin: Effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60: 181-197
  34. Visser, B., E. Munsterman, A. Stoker, and W. G. Dirkse. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172: 6783-6788 https://doi.org/10.1128/jb.172.12.6783-6788.1990
  35. Visser, B., T. van der Salm, W. van der Brink, and G. Folkers. 1988. Genes from Bacillus thuringiensis entomocidus 60.5 coding for insect-specific toxins. Mol. Gen. Genet. 212: 219-224 https://doi.org/10.1007/BF00334688
  36. Von Tersch, M. A., H. L. Robbins, C. S. Jany, and T. B. Johnson. 1991. Insecticidal toxins from Bacillus thuringiensis subsp. kenyae: Gene cloning and characterization and comparison with B. thuringiensis subsp. kurstaki Cry1A(c) toxins. Appl. Environ. Microbiol. 57: 349-358
  37. Walters, F. S. and L. H. English. 1995. Toxicity of Bacillus thuringiensis $\delta$-endotoxins toward the potato aphid in an artificial diet bioassay. Entomol. Exp. Appl. 77: 211-216 https://doi.org/10.1007/BF02383036