Flatfish Vitellogenin Detection Using Optical Waveguide Lightmode Spectroscopy-based Immunosensor

  • Kim, Nam-Soo (Food Nano-Biotechnology Research Center, Korea Food Research Institute) ;
  • Ryu, Hyung-Seok (Department of Biotechnology, Chung-Ang University) ;
  • Kim, Woo-Yeon (Department of Biotechnology, Chung-Ang University)
  • Published : 2007.09.30

Abstract

A sensitive optical waveguide lightmode spectroscopy-based immunosensor was developed to detect vitellogenin in seawater flatfish (Paralichthys olivaceus). For this purpose, anion-exchange column chromatography with DE-52 resin was used to purify flatfish vitellogenin from flatfish serum containing vitellogenin that had been induced using an intraperitoneal $17{\beta}$-estradiol injection. The anti-flatfish vitellogenin antibody used as the biological component of the above immunosensor was prepared using the purified flatfish vitellogenin. The change in the incoupling angle according to the complexation between the flatfish vitellogenin and its antibody, immobilized over an optical grating coupler sensor chip, was measured to calculate the sensor response. The immunosensor was quite specific to flatfish vitellogenin binding, based on no sensor response in the case of bovine serum albumin immobilization. When plotted using double-logarithmic scales, the sensor responses increased linearly in flatfish vitellogenin concentrations of 0.00675-67.5 nM, with a detection limit of 0.0675 nM. The reusability during seven repetitive measurements was reasonably fair for the preliminary screening of flatfish vitellogenin.

Keywords

References

  1. Chen, T. T. 1983. Identification and characterization of estrogen-responsive gene products in the liver of rainbow trout. Can. J. Biochem. Cell Biol. 61: 802-810 https://doi.org/10.1139/o83-102
  2. Hug, T. S., J. E. Prenosil, and M. Morbidelli. 2001. Optical waveguide lightmode spectroscopy as a new method to study adhesion of anchorage-dependent cells as an indicator of metabolic state. Biosens. Bioelectron. 16: 1865-1874
  3. Kim, N., I.-S. Park, and D.-K. Kim. 2007. Salmonella detection with a direct-binding optical grating coupler immunosensor. Sens. Actuators B Chem. 121: 606-615 https://doi.org/10.1016/j.snb.2006.04.094
  4. Kim, N., I.-S. Park, and D.-K. Kim. 2006. Optimization of quartz crystal microbalance-precipitation sensor measuring acetylcholinesterase activity. J. Microbiol. Biotechnol. 16: 1523-1528
  5. Kim, N., I.-S. Park, and D.-K. Kim. 2004. Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa. Sens. Actuators B Chem. 100: 432-438 https://doi.org/10.1016/j.snb.2004.02.014
  6. Kim, N., I.-S. Park, and W.-Y. Kim. 2006. Detection of carp vitellogenin with piezoelectric immunosensor. J. Korean Soc. Appl. Biol. Chem. 49: 254-258
  7. Kolosova, A. Y., J. V. Samsonova, and A. M. Egorov. 2000. Competitive ELISA of chloramphenicol: Influence of immunoreagent structure and application of the method for the inspection of food of animal origin. Food Agric. Immunol. 12: 115-125 https://doi.org/10.1080/095401000404067
  8. Kuhlmeier, D., E. Rodda, L. O. Kolarik, D. N. Furlong, and R. Bilitewski. 2003. Application of atomic force microscopy and grating coupler for the characterization of biosensor surfaces. Biosens. Bioelectron. 18: 925-936 https://doi.org/10.1016/S0956-5663(02)00213-0
  9. Leonard, P., S. Hearty, J. Quinn, and R. O'Kennedy. 2004. A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens. Bioelectron. 19: 1331-1335 https://doi.org/10.1016/j.bios.2003.11.009
  10. Magalhães, I., M.-L. Ledrich, J.-C. Pihan, and J. Falla. 2004. One-step, non-denaturing purification method of carp (Cyprinus carpio) vitellogenin. J. Chromatogr. B 799: 87-93 https://doi.org/10.1016/j.jchromb.2003.10.026
  11. MicroVacuum Ltd. 2002. Optical Waveguide Lightmode Spectroscopy System OWLS 110 & Biosense 2.2 Software User's Manual, pp. 25-26
  12. Moon, D.-K., N. Kim, and W.-Y. Kim. 2006. Reactivity of the antibodies against purified carp vitellogenin and a synthetic vitellogenin peptide. J. Korean Soc. Appl. Biol. Chem. 49: 196-201
  13. Mosconi, G., O. Carnevali, R. Carletta, M. Nabissi, and A. M. Polzonetti-Magni. 1998. Gilthead seabream (Sparus aurata) vitellogenin: Purification, partial characterization, and validation of an enzyme-linked immunosorbent assay (ELISA). Gen. Comp. Endocrinol. 110: 252-261 https://doi.org/10.1006/gcen.1998.7075
  14. Nam, Y. S. and J.-W. Choi. 2006. Fabrication and electrical characteristics of ferredoxin self-assembled layer for biomolecular electronic device application. J. Microbiol. Biotechnol. 16: 15-19
  15. Norberg, B. and C. Haux. 1988. An homologous radioimmunoassay for brown trout (Salmo trutta) vitellogenin. Fish Physiol. Biochem. 5: 59-68 https://doi.org/10.1007/BF01875643
  16. Oh, B.-K., Y.-K. Kim, K. W. Park, W. H. Lee, and J.-W. Choi. 2004. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosens. Bioelectron. 19: 1497-1504 https://doi.org/10.1016/j.bios.2003.12.009
  17. Park, I.-S., D.-K. Kim, and N. Kim. 2004. Characterization and food application of a potentiometric biosensor measuring $\beta$-lactam antibiotics. J. Microbiol. Biotechnol. 14: 698-706
  18. Park, I.-S., W.-Y. Kim, and N. Kim. 2000. Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp. Biosens. Bioelectron. 15: 167-172 https://doi.org/10.1016/S0956-5663(00)00053-1
  19. Park, J.-S., S.-H. Lim, S. J. Sim, H. Chae, H. C. Yoon, S. S. Yang, and B.-W. Kim. 2006. Enhancement of sensitivity in interferometric biosensing by using a new biolinker and prebinding antibody. J. Microbiol. Biotechnol. 16: 1968-1976
  20. Prakash Vincent, S. G., R. Keller, and T. Subramoniam. 2001. Development of vitellogenin-ELISA, an in vivo bioassay, and identification of two vitellogenesis-inhibiting hormones of the tiger shrimp Penaeus monodon. Mar. Biotechnol. 3: 561-571 https://doi.org/10.1007/s1012601-0066-6
  21. Pyun, J. C., H. Beutel, J.-U. Meyer, and H. H. Ruf. 1998. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer. Biosens. Bioelectron. 13: 839-845 https://doi.org/10.1016/S0956-5663(98)00050-5
  22. Ramsden, J. J., G. I. Bachmanova, and A. I. Archakov. 1996. Immobilization of proteins to lipid bilayers. Biosens. Bioelectron. 11: 523-528 https://doi.org/10.1016/0956-5663(96)86789-3
  23. Ramsden, J. J. and J. Dreier. 1996. Kinetics of the interaction between DNA and the type IC restriction enzyme EcoR124II. Biochemistry 35: 3746-3753 https://doi.org/10.1021/bi952158f
  24. Ramsden, J. J., S. Y. Li, E. Heinzle, and J. E. Prenosil. 1995. Optical method for measurement of number and shape of attached cells in real-time. Cytometry 19: 97-102 https://doi.org/10.1002/cyto.990190202
  25. Retrieved from http://en.wikipedia.org/wiki/ Endocrine_disruptor. 2007
  26. Tyler, C. R., R. Van Aerle, M. V. Nilsen, R. Blackwell, S. Maddix, B. M. Nilsen, K. Berg, T. H. Hutchinson, and A. Goksoyr. 2002. Monoclonal antibody enzyme-linked immunosorbent assay to quantify vitellogenin for studies on environmental estrogens in the rainbow trout (Oncorhynchus mykiss). Environ. Toxicol. Chem. 21: 47-54 https://doi.org/10.1897/1551-5028(2002)021<0047:MAELIA>2.0.CO;2
  27. Tyler, C. R., B. Van der Eerden, J. P. Sumpter, S. Jobling, and G. Painter. 1996. Measurement of vitellogenin, a biomarker for exposure to oestrogen, in a wide variety of cyprinids. J. Comp. Physiol. 166: 418-426 https://doi.org/10.1007/BF02337886
  28. Volotovsky, V., Y. J. Nam, and N. Kim. 1997. Urease-based biosensor for mercuric ions determination. Sens. Actuators B Chem. 42: 233-237 https://doi.org/10.1016/S0925-4005(97)80340-1
  29. Voros, J., J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer. 2002. Optical grating coupler biosensors. Biomaterials 23: 3699-3710 https://doi.org/10.1016/S0142-9612(02)00103-5