Removal of Serratia marcescens Aerosols Using an Electrostatic Precipitator Air-Cleaner

  • Ko, Gwang-Pyo (Department of Environmental Health, Institute for Health and Environment, School of Public Health, Seoul National University) ;
  • Burge, Harriet (Department of Environmental Health, Harvard School of Public Health)
  • Published : 2007.10.30

Abstract

We characterized the efficacy of an electrostatic precipitator (ESP) air-cleaner in reducing the concentration of Serratia marcescens in an enclosed space. We used an experimental room ($4.5{\times}3{\times}2.9\;m$) in which electrostatic air-cleaners were located. Two air-cleaners enhanced the equivalent ventilation rates in the chamber by about 3.3 air changes per hour (ACH) over the 2 ACH provided by the mechanical ventilation system. Natural die-off of the organisms provided an additional equivalent of 3 ACH, so that the total ventilation rate with the ESP air-ccleaners was 8.3 ACH. We also examined whether the ESP air-cleaners altered the deposition of Serratia marcescens aerosols on the experimental room surfaces. We did not find any significant differences in the number of colony forming units recovered from surfaces with and without the air-cleaners. We installed UV lights inside the ESPs and determined if UV light, in addition to electrical fields, increased the efficacy of the ESPs. The presence of UV light inside the ESP reduced S. marcescens aerosols by approximately 2 ACH. Finally, a box model indicates that the efficiency of the air-cleaner increases for both biological and nonbiological particles at ventilation rates of 0.2-1, which are typical for residential settings.

Keywords

References

  1. Aintablian, N., P. Walpita, and M. H. Sawyer. 1998. Detection of Bordetella pertussis and respiratory synctial virus in air samples from hospital rooms. Infect. Control Hosp. Epidemiol. 19: 918-923 https://doi.org/10.1086/647764
  2. American Lung Association. 1997. Residential Air Cleaning Devices: Types, Effectiveness and Health Impact. Washington, D.C
  3. Anand, N. K. and A. R. McFarland. 1989. Particle deposition in aerosol sampling lines caused by turbulent diffusion and gravitational settling. Am. Ind. Hyg. Assoc. J. 50: 307-312 https://doi.org/10.1080/15298668991374714
  4. Andersen, A. A. 1958. New sampler for the collection, sizing and enumeration of viable airborne particles. J. Bacteriol. 76: 471-484
  5. Cordes, L. G., D. W. Fraser, P. Skaliy, C. A. Perlino, W. R. Elsea, G. F. Mallison, and P. S. Hayes. 1980. Legionnaires' disease outbreak at an Atlanta, Georgia, country club: Evidence for spread from an evaporative condenser. Am. J. Epidemiol. 111: 425-431 https://doi.org/10.1093/oxfordjournals.aje.a112917
  6. Cornet, M., V. Levy, L. Fleury, J. Lortholary, S. Barquins, M. H. Coureul, E. Deliere, R. Zittoun, G. Brucker, and A. Bouvet. 1999. Efficacy of prevention by high-efficiency particulate air filtration or laminar airflow against Aspergillus airborne contamination during hospital renovation. Infect. Control Hosp. Epidemiol. 20: 508-513 https://doi.org/10.1086/501661
  7. Cox, C. S. 1989. Airborne bacteria and viruses. Science Progr. 73: 469-499
  8. Kam, S. K., K. H. Kang, and M. G. Lee. 2005. Removal characteristics of ethyl acetate and 2-butanol by a biofilter packed with Jeju scoria. J. Microbiol. Biotechnol. 15: 977-983
  9. Kang, H. S., J. K. Lee, M. H. Kim, and D. H. Park. 2006. Effect of electrochemical oxidation potential on biofilter for bacteriological oxidation of VOCs to $CO_2$. J. Microbiol. Biotechnol. 16: 399-407
  10. Ko, G., M. W. First, and H. A. Burge. 2001. The characterization of upper room ultraviolet germicidal irradiation in inactivating airborne microorganisms. Environ. Health Perspect. 110: 95-101 https://doi.org/10.1289/ehp.0211095
  11. Kuru, T. and J. P. Lynch. 1999. Nonresolving or slowly resolving pneumonia. Clin. Chest Med. 20: 623-651 https://doi.org/10.1016/S0272-5231(05)70241-0
  12. Kwak, J., D. H. Lee, Y. D. Park, S. B. Kim, J. S. Maeng, H. W. Oh, H. Y. Park, and K. S. Bae. 2006. Polyphasic assignment of a highly proteolytic bacterium isolated from a spider to Serratia proteamaculans. J. Microbiol. Biotechnol. 16: 1537-1543
  13. Lajcikova, A., Z. Mathauserova, and K. Klanova. 2000. Effect of recirculation air cleaners on indoor air quality in a children's home. Central Eur. J. Public Health 8: 182-185
  14. Lee, Y. H. and B. U. Lee. 2006. Inactivation of airborne E. coli and B. subtilis bioaerosols utilizing thermal energy. J. Microbiol. Biotechnol. 16: 1684-1689
  15. May, K. R. 1973. The collison nebulizer: Description, performance, and application. J. Aerosol Sci. 4: 235 https://doi.org/10.1016/0021-8502(73)90006-2
  16. McDonald, B. and M. Ouyang. 2000. Air cleaning-particles, pp. 9.1-9.28. In J. D. Spengler, J. M. Samet, and J. F. McCarthy (eds.), Indoor Air Quality Handbook. McGraw- Hill, New York, NY
  17. Offerman, F. J., R. G. Sextro, and W. J. Fisk. 1985. Control of respirable particles in indoor air with portable air cleaners. Atmos. Environ. 19: 1761-1771 https://doi.org/10.1016/0004-6981(85)90003-4
  18. Theunissen, H. J., N. A. Lemmens-den Toom, A. Burggraaf, E. Stolz, and M. F. Michel. 1993. Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols. Appl. Environ. Microbiol. 59: 2589-2593
  19. U.S. Environmental Protection Agency. 1990. Residential air cleaning devices - a summary of available information. EPA-400-I-90-002
  20. Wood, R. A., E. F. Johnson, M. L. Van Natta, P. H. Chen, and P. A. Eggleston. 1998. A placebo-controlled trial of a HEPA air cleaner in the treatment of cat allergy. Am. J. Respir. Crit. Care Med. 158: 115-120 https://doi.org/10.1164/ajrccm.158.1.9712110