Fatty Acid and Carotenoid Production by Sporobolomyces ruberrimus when Using Technical Glycerol and Ammonium Sulfate

  • Razavi, Seyed Hadi (Department of Food Science & Engineering, Faculty of Biosystem Engineering, University of Tehran) ;
  • Mousavi, Seyed Mohammad (Department of Food Science & Engineering, Faculty of Biosystem Engineering, University of Tehran) ;
  • Yeganeh, Hassan Mehrabani (University College of Agriculture & Natural Resources, University of Tehran) ;
  • Marc, Ivan (Laboratoire des Science du Genie Chimique)
  • Published : 2007.10.30

Abstract

The production of carotenoids, lipid content, and fatty acid composition were all studied in a strain of Sporobolomyces ruberrimus when using different concentrations of technical glycerol as the carbon source and ammonium sulfate as the nitrogen source. The total lipids represented an average of 13% of the dry weight, and the maximum lipids were obtained when using 65.5 g/l technical glycerol (133.63 mg/g). The optimal conditions for fatty acid production were at $27^{\circ}C$ using 20 g of ammonium sulfate and a pH range from 6 to 7, which produced a fatty acid yield of $32.5{\pm}1\;mg/g$, including $1.27{\pm}0.15\;mg$ of linolenic acid (LNA), $7.50{\pm}0.45\;mg$ of linoleic acid (LLA), $5.50{\pm}0.35\;mg$ of palmitic acid (PA), $0.60{\pm}0.03\;mg$ of palmitoleic acid (PAL), $1.28{\pm}0.11\;mg$ of stearic acid (SA), $9.09{\pm}0.22\;mg$ of oleic acid, $2.50{\pm}0.10\;mg$ of erucic acid (EA), and $4.25{\pm}0.20\;mg$ of lignoceric acid (LCA), where the palmitic, oleic, and linoleic acids combined formed about 37% of the total fatty acids. The concentration of total carotenoids was 2.80 mg/g when using 20 g of ammonium sulfate, and consisted of torularhodin (2.70 mg/g) and $\beta$-carotene (0.10 mg/g), at $23^{\circ}C$ and pH 6. However, the highest amount with the maximum specific growth rate was obtained (${\mu}_{max}=0.096\;h^{-1}$) with an ammonium sulfate concentration of 30 g/l.

Keywords

References

  1. Aggelis, G., M. Komaitis, S. Papanikolaou, and G. Papankolaou. 1995. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil. Grasas y Aceites. 46: 169-173 https://doi.org/10.3989/gya.1995.v46.i3.921
  2. Blagovic, B., J. Rupcic, M. Mesaric, K. Georgiu, and V. Maric. 2001. Lipid composition of Brewer's yeast. Food Technol. Biotechnol. 39: 175-181
  3. Buzzini, P. 2001. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J. Appl. Microbiol. 90: 843-847 https://doi.org/10.1046/j.1365-2672.2001.01319.x
  4. Davies, R. J. 1988. Yeast oil from cheese whey - process development, pp. 99-143. In R. S. Modern (ed.), Single Cell Oil. Longman, London
  5. Dyerberg, J. 1986. Linolenate-derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr. Rev. 44: 124-134
  6. Ghanem, K., S. A. M. Sabry, and H. H. Yusef. 1990. Some physiological factors influencing lipid production by Rhodotorula glutinis from Egyptian beet molasses. J. Islam. Acad. Sci. 3, 4: 305-309
  7. Granger, L.-M., P. Perlot, G. Goma, and A. Pareilleux. 1993. Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 38: 784-789 https://doi.org/10.1007/BF00167145
  8. Hayman, G. T., B. M. Mannarelli, and T. D. Leathers. 1995. Production of carotenoids by Phaffia rhodozyma grown on media composed of corn wet-milling co-products. J. Ind. Microbiol. 14: 389-395 https://doi.org/10.1007/BF01569956
  9. Jacobson, G. K., S. O. Jolly, J. J. Sedmak, T. J. Skatrud, and J. M. Wasileski. 1994. Astaxanthin over-producing strains of Phaffia rhodozyma, methods for their cultivation, and their use in animal feeds. US Patent, WO 94/23594
  10. Kang, M. J., S. H. Yoon, Y. M. Lee, S. H. Lee, J. E. Kim, K. H. Jung, Y. C. Shin, and S. W. Kim. 2005. Enhancement of lycopene production in Esherichia coli by optimization of the lycopene synthetic pathway. J. Microbiol. Biotechnol.15: 880-886
  11. Kim, J. H., S. K. Choi, Y. S. Park, C. W. Yun, W. D. Cho, K. M. Chee, and H. I. Chang. 2006. Effect of culture conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1. J. Microbiol. Biotechnol. 16: 438-442
  12. Kim, J. H. and H. I. Chang. 2006. High-level production of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1 using chemical and light induction. J. Microbiol. Biotechnol. 16: 381-385
  13. Kusdiyantini, E., P. Gaudin, G. Goma, and P. J. Blanc. 1998. Growth kinetics and astaxanthin production of Phaffia rhodozyma on a glycerol as a carbon source during batch fermentation. Biotechnol. Lett. 20: 929-934 https://doi.org/10.1023/A:1005345224510
  14. Lindberg, A. M. and G. Molin. 1993. Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by the fungus Mortierella alpina CBS 343.66 in fermentor cultures. Appl. Microbiol. Biotechnol. 39: 450-455 https://doi.org/10.1007/BF00205031
  15. Lomascolo, A., E. Dubreucq, V. Perrier, and P. Galzy. 1994. Study of lipids in Lipomyces and Waltomyces. Can. J. Microbiol. 40: 724-729 https://doi.org/10.1139/m94-115
  16. Martin, A. M., L. Chun, and R. P. Thakor. 1993. Growth parameters for the yeast Rhodotorula rubra grown in peat extract. J. Ferment. Bioeng. 76: 321-325 https://doi.org/10.1016/0922-338X(93)90202-J
  17. Meyer, P. S. and J. C. du Preez. 1994. Astaxanthin production by a Phaffia rhodozyma mutant on grape juice. World J. Microbiol. Biotechnol. 10: 178-183 https://doi.org/10.1007/BF00360882
  18. Nor, A. F. 1984. Recueil des normes françaises des corps/ grains oleagineux et produits derives. 3e edition, 60-233, pp. 95
  19. Okagbue, R. N. and M. Lewis. 1985. Influence of mixed culture conditions on yeast-wall hydrolytic activity of Bacillus circulans WL-12 and on extractability of astaxanthin from the yeast Phaffia rhodozyma. J. Appl. Bacteriol. 59: 243-255 https://doi.org/10.1111/j.1365-2672.1985.tb01786.x
  20. Perrier, V., E. Dubreucq, and P. Galzy. 1995. Fatty acid and carotenoid composition of Rhodotorula strains. Arch. Microbiol. 164: 173-179 https://doi.org/10.1007/BF02529968
  21. Ratledge, C. 1982. Microbial oils and fats: An assessment of their commercial potential. Prog. Ind. Microbiol. 16: 119-206
  22. Razavi, S. H., F. Blanchard, and I. Marc. 2006. UV-HPLC/ APCI-MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110. Iran. J. Chem. Chem. Eng. 25: 1-10
  23. Sugano, M., T. Ishida, K. Yoshida, K. Tanaka, M. Miwa, N. Arima, and A. Morita. 1986. Effects of mold oil containing $\gamma$-linolenic acid on the blood cholesterol and eicosanoid levels of rats. Agric. Biol. Chem. 50: 2483-2491 https://doi.org/10.1271/bbb1961.50.2483
  24. Veen, M. and C. Lang. 2004. Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 63: 635-646 https://doi.org/10.1007/s00253-003-1456-7
  25. Von Schacky, C. and J. Dyerberg. 2001. Omega 3 fatty acids from Eskimos to clinical cardiology - what took us so long? World Rev. Nutr. Diet 88: 90-99
  26. Weete, J. D. 1980. Lipid Biochemistry of Fungi and Other Organisms. Plenum Press, New York, pp. 9-48
  27. Yamauchi, H., H. Mori, T. Kobayashi, and S. Shimizu. 1993. Mass production of lipids by Lipomyces starkeyi in microcomputer aided fed-batch culture. J. Ferment. Technol. 61: 275-280