Changes in Aurantio-Obtusin and Glucoaurantio-Obtusin Content in Cassiae Semen via Treatment with a Crude Enzyme Extract from Aspergillus usamii

  • Hur, Jong-Moon (School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Kwon, Soon-Ho (School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • So, Jae-Hyun (School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Jun, Mi-Ra (Division of Food Science, Dong-A University) ;
  • Kang, Young-Hwa (School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Lee, Yu-Mi (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Kyung-Bok (College of Medicine, Konyang University) ;
  • Rhee, In-Koo (School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Lee, Moon-Soon (Chemical Safety & Accidental Prevention Division, Chemical Assessment Department, National Institute of Environmental Research) ;
  • Song, Kyung-Sik (School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University)
  • 발행 : 2007.11.30

초록

Cassiae Semen (seeds of Cassia tora) showed a remarkably different HPLC chromatogram after being treated with a crude enzyme extract from Aspergillus usamii. Increased and decreased compounds were identified as aurantio-obtusin and glucoaurantio-obtusin, respectively. The aurantio-obtusin content reached its maximum level ($133.58{\pm}0.39\;{\mu}g/mg$ extract) after being incubated for 50 min at $37^{\circ}C$, whereas the inactivated crude enzyme-treated control remained unchanged ($54.13{\pm}1.33\;{\mu}g/mg$). On the other hand, the glucoaurantio-obtusin content decreased by less than one-third ($51.09{\pm}1.63\;{\mu}g/mg$) ofthe untreated control ($143.19{\pm}2.12\;{\mu}g/mg$), suggesting that an increase in aurantio-obtusin content originated from the enzymatic cleavage of its glucoside glucoaurantio-obtusin.

키워드

참고문헌

  1. Blois, M. S. 1985. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1201 https://doi.org/10.1038/1811199a0
  2. Choi, J. S., H. J. Lee, K. Y. Park, J. O. Ha, and S. S. Kang. 1997. In vitro antimutagenic effects of anthraquinone aglycones and naphthopyrones glycosides from Cassia tora. Planta Med. 63: 11-14 https://doi.org/10.1055/s-2006-957593
  3. Cushman, D. W., E. M. Gordon, F. L. Wang, H. S. Cheung, R. Tung, and N. G. Delaney. 1983. Purification and characterization of enkephalinase, angiotensin converting enzyme, and a third peptidyldipeptidase from rat brain. Life Sci. 33: 25-28 https://doi.org/10.1016/0024-3205(83)90435-6
  4. Do, H. J. 2003. Purification and characterization of ${\beta}$- glucosidase produced by Aspergillus usamii D5 isolated from traditional fermented food. MS thesis. Kyungpook National University, Daegu, Korea
  5. Jeon, K. S., I. K. Hwang, and G. E. Ji. 2002. Assay of $\beta$- glucosidase activity of Bifidobacteria and the hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation. J. Microbiol. Biotechnol. 12: 8-13
  6. Jeon, S. Y., K. Bae, Y. H. Seong, and K. S. Song. 2003. Green tea catechins as a BACE1 ($\beta$-secretase) inhibitor. Bioorg. Med. Chem. Lett. 13: 3905-3908 https://doi.org/10.1016/j.bmcl.2003.09.018
  7. Jeon, S. Y., E. K. Kim, H. M. Kwak, J. Y. Kim, J. H. Lim, S. K. Chung, and K. S. Song. 2004. Changes in chemical composition and biological activities of Oriental crude drugs by food processing techniques (II) - Changes in paeonol contents in roasted Moutan Cortex. Kor. J. Pharmacogn. 35: 388-392
  8. Ju, H. K., B. A. Hwang, S. J. Kang, S. Y. Chang, D. H. Won, J. S. Ro, and K. S. Lee. 2001. Isolation and quantitative analysis of aurantio-obtusin from Cassiae Semen. Kor. J. Pharmacogn. 32: 157-162
  9. Kanamaru, H. and O. Yoshida. 1989. Assessment of in vitro lymphokine activated killer (LAK) cell activity against renal cancer cell lines and its suppression by serum factor using crystal violet assay. Urolog. Res. 17: 259-264
  10. Kim, S. I., J. E. Kim, J. H. So, I. K. Rhee, S. K. Chung, K. B. Lee, Y. C. Yoo, and K. S. Song. 2004. Changes in chemical composition and biological activities of Oriental crude drugs by food processing techniques (I) - Changes in liquiritigenin contents in licorice extract treated by the crude enzyme extract from Aspergillus kawachii. Kor. J. Pharmacogn. 35: 309-314
  11. Kwak, H. M., J. Y. Kim, J. H. Lim, S. K. Cung, S. H. Kwon, H. H. Jeong, J. M. Hur, and K. S. Song. 2005. Changes in chemical composition and biological activities of Oriental crude drugs by food processing techniques (III) Changes of 5-HMF contents from roasted Asparagi Tuber. Kor. J. Pharmacogn. 36: 235-239
  12. Lee, C. Y., K. H. Kim, S. Y. Hur, J. H. Heo, M. H. Choi, S. K. Rhee, and C. H. Kim. 2006. Enzymatic synthesis of ascorbic acid fructoside by transfructosylation using levan fructotransferase. J. Microbiol. Biotechnol. 16: 64-67
  13. Lee, H. J., J. H. Jung, S. S. Kang, and J. S. Choi. 1997. A rubrofusarin gentiobioside isomer from roasted Cassia tora. Arch. Pharm. Res. 20: 513-515 https://doi.org/10.1007/BF02973951
  14. Lee, J. H., S. Y. Lee, K. S. Lee, H. J. Jang, K. H. Lee, T. R. Hahn, and Y. S. Paik. 2004. Prolyl endopeptidase inhibitors from the leaves of Ginko biloba. Planta Med. 70: 1228-1230 https://doi.org/10.1055/s-2004-835856
  15. Lin, P. S., K. C. Ho, and S. J. Sung. 1993. Combined treatments of heat, radiation, or cytokines with flavone acetic acid on the growth of cultured endothelial cells. Int. J. Hyperthermia 9: 517-528 https://doi.org/10.3109/02656739309005049
  16. Morin, R. J. and D. Willoughby. 1975. Comparison of several activated partial thromboplastin time methods. Am. J. Clinic. Pathol. 64: 241-247 https://doi.org/10.1093/ajcp/64.2.241
  17. Nikaido, T., T. Ohmoto, U. Sankawa, S. Kitanaka, and M. Takido. 1984. Inhibitors of cAMP phosphodiesterase in medicinal plants. VIII. Inhibitors of adenosine 3',5'-cyclic monophosphate phosphodiesterase in Cassia seed. Chem. Pharm. Bull. 32: 3075-3078 https://doi.org/10.1248/cpb.32.3075
  18. Yamaguchi, T., K. Hayashi, M. Takito, and H. Mihashi. 1990. Pharmaceuticals containing anthraquinones as aldose reductase inhibitors. Jpn, Kokai Tokkyo Koho, JP 02149515 A2 19900608 Heisei, p. 6
  19. Yen, G. C. and D. Y. Chung. 1999. Antioxidant effects of extracts from Cassia tora L. prepared under different degrees of roasting on the oxidative damage to biomolecules. J. Agric. Food Chem. 47: 1326-1332 https://doi.org/10.1021/jf9810618
  20. Yun-Choi, H. S., J. H. Kim, and M. Takido. 1990. Potential inhibitors of platelet aggregation from plant sources, V. Anthraquinones from seeds of Cassia obtusifolia and related compounds. J. Nat. Prod. 53: 630-633 https://doi.org/10.1021/np50069a014
  21. Zhang, Q., J. Yin, and J. Zhang. 1996. Comparison of contents of some active components between crude and processed seeds of sickle senna (Cassia tora) and their detections by HPLC. Chinese Herb 27: 79-81