Genetic Analysis of Spontaneous Lactose-Utilizing Mutants from Vibrio vulnificus

  • Baek, Chang-Ho (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Ko-Eun (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Park, Dae-Kyun (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Choi, Sang-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Kun-Soo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2007.12.31

Abstract

Wild-type V. vulnificus cannot grow using lactose as the sole carbon source or take up the sugar. However, prolonged culture of this species in media containing lactose as the sole carbon source leads to the generation of a spontaneous lactose-utilizing (LU) mutant. This mutant showed strong ${\beta}$-galactosidase activity, whereas the wild-type strain showed a barely detectable level of the activity. A mutant with a lesion in a gene homologous to the lacZ of E. coli in the bacterium no longer showed ${\beta}$-galactosidase activity or generated spontaneous LU mutants, suggesting that the lacZ homolog is responsible for the catabolism of lactose, but the expression of the gene and genes for transport of lactose is tightly regulated. Genetic analysis of spontaneous LU mutants showed that all the mutations occur in a lacI homolog, which is located downstream to the lacZ and putative ABC-type lac permease genes. Consistent with this, a genomic library clone containing the lad gene, when present in trans, made the spontaneous LU mutants no longer able to utilize lactose as the sole carbon source. Taken together with the observation that excessive amounts of exogenously supplemented possible catabolic products of lactose have negative effects on the growth and survivability of V. vulnificus, we suggest that V. vulnificus has evolved to carry a repressor that tightly regulates the expression of lacZ to keep the intracellular toxic catabolic intermediates at a sublethal level.

Keywords

References

  1. Baumann, P., L. Baumann, and M. Mandel. 1971. Taxonomy of marine bacteria: The genus Beneckea. J. Bacteriol. 107: 268-294
  2. Baumann, P., L. Baumann, and B. G. Hall. 1981. Lactose utilization by V. vulnificus. Curr. Microbiol. 6: 131-135 https://doi.org/10.1007/BF01642385
  3. Beckwith, J. R. 1967. Regulation of Lac operon. Science 156: 597-604 https://doi.org/10.1126/science.156.3775.597
  4. Blake, P. A., R. E. Weaver, and D. G. Hollis. 1980. Diseases of humans (other than cholerae) caused by vibrios. Annu. Rev. Microbiol. 34: 341-367 https://doi.org/10.1146/annurev.mi.34.100180.002013
  5. Byrd, J. J., A. M. Cheville, J. L. Bose, and C. W. Kaspar. 1999. Lethality of a heat- and phosphate-catalyzed glucose by-product to Escherichia coli O157:H7 and partial protection conferred by the rpoS regulon. Appl. Environ. Microbiol. 65: 2396-2401
  6. Chaplin, M. F. 1994. Monosaccharides, pp. 2-3. In M. F. Chaplin and J. F. Kennedy (eds.), Carbohydrate Analysis: A Practical Approach. Oxford University Press Inc., New York
  7. Chuprina, V. P., J. A. C. Rullmann, R. M. J. N. Lamerich, J. H. van Boom, R. Boelens, and R. Kaptein. 1993. Structure of the complex of lac repressor headpiece and an 11 basepair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. J. Mol. Biol. 234: 446-462 https://doi.org/10.1006/jmbi.1993.1598
  8. Davidson, L. S. and J. D. Oliver. 1986. Plasmid carriage in Vibrio vulnificus and other lactose-fermenting marine vibrios. Appl. Environ. Microbiol. 52: 211-213
  9. de Crombrugghe, B., S. Busby, and H. Buc. 1984. Cyclic AMP receptor protein: Role in transcription activation. Science 224: 831-838 https://doi.org/10.1126/science.6372090
  10. de Lorenzo, V. and K. N. Timmis. 1994. Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol. 235: 386-405 https://doi.org/10.1016/0076-6879(94)35157-0
  11. Ellis, J. G., M. M. Ryder, and M. E. Tate. 1984. Agrobacterium tumefaciens TR-DNA codes a pathway for agropine biosynthesis. Mol. Gen. Genet. 195: 466-473 https://doi.org/10.1007/BF00341448
  12. Finkelstein, R. A. and C. E. Lankford. 1957. A bacteriotoxic substance in autoclaved culture media containing glucose and phosphate. Appl. Microbiol. 5: 74-79
  13. Friedman, A. M., T. O. Fischman, and T. A. Steitz. 1995. Crystal structure of lac repressor core tetramer and implications for DNA looping. Science 268: 1721-1727 https://doi.org/10.1126/science.7792597
  14. Hall, B. G. 1978. Regulation of newly evolved enzymes. IV. Directed evolution of the ebg repressor. Genetics 90: 673- 691
  15. Hars, U., R. Horlacher, W. Boos, W. Welte, and K. Diederichs. 1998. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. Protein Sci. 7: 2511-2521 https://doi.org/10.1002/pro.5560071204
  16. Hollis, D. G., R. E. Weaver, C. N. Baker, and C. Thornsberry. 1976. Halophilic Vibrio species isolated from blood cultures. J. Clin. Microbiol. 3: 425-431
  17. Jacob, J. and J. Monod. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318-356 https://doi.org/10.1016/S0022-2836(61)80072-7
  18. Kaniga, K., I. Dellor, and G. R. Cornelis. 1991. A wide-hostrange suicide vector for improving reverse genetics in Gramnegative bacteria: Inactivation of the blaA gene of Yersinia enterocolitica. Gene 20: 137-141
  19. Kim, S.-J., C.-M. Lee, M.-Y. Kim, Y.-S. Yeo, S.-H. Yoon, H.-C. Kang, and B.-S. Koo. 2007. Screening and characterization of enzyme with ${\beta}$-glucosidase activity from environmental DNA. J. Microbiol. Biotechnol. 17: 905-912
  20. Klontz, K. C., S. Lieb, M. Schreiber, H. T. Janowski, L. M. Baldy, and R. A. Gunn. 1988. Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, 1981-1987. Ann. Intern. Med. 109: 318-323
  21. Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Faris, R. M. Roop II, and K. M. Peterson. 1995. Four new derivatives of the broad-host range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 66: 175-176
  22. Lee, J.-H., J.-E. Rhee, U. Y. Park, H.-M. Ju, B.-C. Lee, T.-S. Kim, H.-S. Jeong, and S.-H. Choi. 2007. Identification and functional analysis of Vibrio vulnificus SmcR, a novel global regulator. J. Microbiol. Biotechnol. 17: 325-334
  23. Lee, K.-E., J.-S. Bang, C.-H. Baek, D.-K. Park, W. Hwang, and K.-S. Kim. 2007. IVET-based identification of virulence factors in Vibrio vulnificus MO6-24/O. J. Microbiol. Biotechnol. 17: 234-243
  24. Lee, K.-E., D.-K. Park, C.-H. Baek, W. Hwang, and K.-S. Kim. 2006. repABC-type replicator region of megaplasmid pAtC58 in Agrobacterium tumefaciens C58. J. Microbiol. Biotechnol. 16: 118-125
  25. Miller, J. H. 1972. Formulas and recipes. p. 431. In: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  26. Oliver, J. D., R. A. Warner, and D. R. Cleland. 1982. Distribution and ecology of Vibrio vulnificus and other lactose-fermenting marine vibrios in coastal waters of the southeastern United States. Appl. Environ. Microbiol. 44: 1404-1414
  27. Pierre, P. and H. M. Krisch. 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 1045: 303-313
  28. Ruben, G. C. and T. B. Roos. 1997. Conformation of Lac repressor tetramer in solution, bound and unbound to operator DNA. Microsc. Res. Tech. 36: 400-416 https://doi.org/10.1002/(SICI)1097-0029(19970301)36:5<400::AID-JEMT10>3.0.CO;2-W
  29. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. U.S.A
  30. Schumacher, M. A., K. Y. Choi, H. Zalkin, and R. G. Brennan. 1994. Crystal structure of LacI member, PurR, bound to DNA: Minor groove binding by ${\alpha}$ helices. Science 266: 763-770 https://doi.org/10.1126/science.7973627
  31. Sistrom, W. R. 1962. The kinetics of the synthesis of photopigment in Rhodopseudomonas sphaeroides. J. Gen. Microbiol. 28: 607-616 https://doi.org/10.1099/00221287-28-4-607
  32. Skorupski, K. and R. K. Taylor. 1996. Positive selection vectors for allelic exchange. Gene 169: 47-52 https://doi.org/10.1016/0378-1119(95)00793-8
  33. Swint-Kruse, L., C. Larson, B. M. Pettitt, and K. S. Matthews. 2002. Fine-turning function: Correlation of hinge domain interactions with functional distinctions between LacI and PurR. Protein Sci. 11: 778-794 https://doi.org/10.1110/ps.4050102
  34. Tacket, C. O., T. J. Barrett, J. M. Mann, M. A. Roberts, and P. A. Blake. 1984. Wound infections caused by Vibrio vulnificus, a marine vibrio, in inland areas of the United States. J. Clin. Microbiol. 19: 197-199
  35. Weickert, M. J. and S. Adhya. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J. Biol. Chem. 267: 15869-15874
  36. Wright, A. C., L. M. Simpson, J. D. Oliver, and J. G. Morris Jr. 1990. Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect. Immun. 58: 1769-1773
  37. Wright, A. C., R. T. Hill, J. A. Johnson, M. C. Roghman, R. R. Colwell, and J. G. Morris Jr. 1996. Distribution of Vibrio vulnificus in the Chesapeake Bay. Appl. Environ. Microbiol. 62: 717-724