Supplementation of a Novel Microbial Biopolymer, PGB1, from New Enterobacter sp. BL-2 Delays the Deterioration of Type 2 Diabetic Mice

  • Yeo, Ji-Young (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Lee, Yong-Hyun (Department of Genetic Engineering, Kyungpook National University) ;
  • Jeon, Seon-Min (Institute of Genetic Engineering, Kyungpook National University) ;
  • Jung, Un-Ju (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Lee, Mi-Kyung (Department of Food and Nutrition, Sunchon National University) ;
  • Jung, Young-Mi (ENZ Bio Co., Ltd., Kyungpook National University) ;
  • Choi, Myung-Sook (Department of Food Science and Nutrition)
  • Published : 2007.12.31

Abstract

Antidiabetic effects of a novel microbial biopolymer (PGB) 1 excreted from new Enterobacter sp. BL-2 were tested in the db/db mice. The animals were divided into normal control, rosiglitazone (0.005%, wt/wt), low PGB1 (0.1%, wt/wt), and high PGB1 (0.25%, wt/wt) groups. After 5 weeks, the blood glucose levels of high PGB1 and rosiglitazone supplemented groups were significantly lower than those of the control group. In hepatic glucose metabolic enzyme activities, the glucokinase activities of PGB1 supplemented groups were significantly higher than the control group, whereas the PEPCK activities were significantly lower. The plasma insulin and hepatic glycogen levels of the low and high PGB1 supplemented groups were significantly higher compared with the control group. Specifically, the insulin and glycogen increases were dose-responsive to PGB1 supplement. PGB1 supplement did not affect the IPGTT and IPITT compared with the control group; however, rosiglitazone significantly improved IPITT. High PGB1 and rosiglitazone supplementation preserved the appearance of islets and insulin-positive cells in immunohistochemical photographs of the pancreas compared with the control group. These results demonstrated that high PGB1 (0.25% in the diet) supplementation seemingly contributes to preventing the onset and progression of type 2 diabetes by stimulating insulin secretion and enhancing the hepatic glucose metabolic enzyme activities.

Keywords

References

  1. Alegre, M., C. J. Ciudad, C. Fillat, and J. J. Gulnovant. 1988. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal. Biochem. 173: 185-189 https://doi.org/10.1016/0003-2697(88)90176-5
  2. American Diabetes Association. 1998. Consensus development conference on insulin resistance. Diabetes Care 21: 310- 312 https://doi.org/10.2337/diacare.21.2.310
  3. American Institute of Nutrition. 1977. Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 107: 1340-1348 https://doi.org/10.1093/jn/107.7.1340
  4. American Institute of Nutrition. 1980. Report of ad hoc committee on standards for nutritional studies. J. Nutr. 110: 1717-1726 https://doi.org/10.1093/jn/110.8.1717
  5. Avandia [package insert]. 1999. SmithKline Beecham Pharmaceuticals, Philadelphia, Pa
  6. Bentle, L. A. and H. A. Lardy. 1976. Interaction of anions and divalent metal ions with phosphopyruvate carboxykinase. J. Biol. Chem. 251: 2916-2921
  7. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Chang, M. S., M. S. Oh, D. R. Kim, K. J. Jung, S. M. Park, S. B. Choi, B. S. Ko, and S. K. Park. 2006. Effects of Okchun-San, a herbal formulation, on blood glucose levels and body weight in a model of type 2 diabetes. J. Ethnopharmacol. 103: 491-495 https://doi.org/10.1016/j.jep.2005.08.039
  9. Davidsion, A. L. and W. J. Arion. 1987. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: Physiological implications of higher cellular activity. Arch. Biochem. Biophys. 253: 156-167 https://doi.org/10.1016/0003-9861(87)90648-5
  10. Davis, G. F., R. L. Khandelwal, L. Wu, B. H. Juurlink, and W. J. Roesler. 2001. Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone: A peroxisome proliferators-activated receptor-gamma (PPAR gamma)-independent, antioxidant-related mechanism. Biochem. Pharmacol. 62: 1071-1079 https://doi.org/10.1016/S0006-2952(01)00764-X
  11. Dcrmlim, W., P. Prasertsan, and H. Doelle. 1999. Screening and characterization of bioflocculant produced by isolated Klebsiella sp. Appl. Microbiol. Biotechol. 52: 698-703 https://doi.org/10.1007/s002530051581
  12. Defronzo, R. A. 1988. The triumvirate; beta-cell, muscle, liver. A collusion responsible for type 2 diabetes. Diabetes 37: 667-687 https://doi.org/10.2337/diab.37.6.667
  13. Deng, S. B., R. B. Bai, X. M. Hu, and Q. Luo. 2003. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl. Microbiol. Biotechol. 60: 588-593 https://doi.org/10.1007/s00253-002-1159-5
  14. Dora, R. F. 1996. Diabetes mellitus, pp. 613-641. In L. A. Kaplan and J. P. Amadeo (eds.), Clinical Chemistry. Mosby- Year Book, St. Louis, MO, U.S.A
  15. Fujita, M., M. Ike, J. H. Jang, S. M. Kim, and T. Hirao. 2001. Bioflocculation production from lower-molecular fatty acids as a novel strategy for utilization of sludge digestion liquor. Water Sci. Technol. 144: 237-243
  16. Guignot, L. and G. Mithieux. 1999. Mechanisms by which insulin, associated or not with glucose, many inhibit hepatic glucose production in the rat. Am. J. Physiol. 277: E984- E989
  17. He, P., S. S. Davis, and L. Illum. 1998. In vitro evaluation of mucoadhesive properties of chitosan microspheres. Int. J. Pharm. 166: 75-88 https://doi.org/10.1016/S0378-5173(98)00027-1
  18. Hornbrook, K. R. 1970. Synthesis of liver glycogen in starved alloxan diabetic rat. Diabetes 19: 916-923 https://doi.org/10.2337/diab.19.12.916
  19. Hulcher, F. H. and W. H. Oleson. 1973. Simplified spectrophotometric assay for microsomal 3-hydroxy-3- methylglutaryl CoA reductase by measurement of coenzyme A. J. Lipid Res. 14: 625-631
  20. Hummel, K. P., M. W. Dickie, and D. L. Coleman. 1966. Diabetes, new mutation in the mouse. Science 153: 1127- 1128 https://doi.org/10.1126/science.153.3740.1127
  21. Jang, J. H., M. Ike, S. M. Kim, and M. Fujita. 2001. Production of a novel bioflocculant by fed-batch culture of Citrobacter sp. Biotechnol. Lett. 23: 593-597 https://doi.org/10.1023/A:1010312607171
  22. Jeon, C. 2005. Mercury ion removal using a packed-bed column with granular aminated chitosan. J. Microbiol. Biotechnol. 15: 497-501
  23. Jovanovic, L. and C. M. Peterson. 1981. The clinical utility of glycosylated hemoglobin. Am. J. Med. 70: 331-338 https://doi.org/10.1016/0002-9343(81)90770-1
  24. King, H., R. Aubert, and W. Herman. 1998. Global burden of diabetes, 1995-2025. Prevalence, numerical estimates and projections. Diabetes Care 21: 1414-1431
  25. Koji, H. and I. Mikio. 2002. Antidiabetic action of low molecular weight chitosan in genetically obese diabetic $KKA^y$ mice. Biol. Pharm. Bull. 25: 188-192 https://doi.org/10.1248/bpb.25.188
  26. Krishnamurti, U. and M. W. Steffes. 2001. Glycohemoglobin: A primary predictor of the development or reversal of complications of diabetes mellitus. Clin. Chem. 47: 1157- 1165
  27. Kurane, R., K. Toeda, and T. Suzuku. 1986. Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric. Biol. Chem. 50: 2309-2313 https://doi.org/10.1271/bbb1961.50.2309
  28. Kwon, Y. D., S. Y. Lee, and P. Kim. 2006. Influence of gluconeogenic phosphoenolpyruvate carboxykinase (PCK) expression on succinic acid fermentation in Escherichia coli under high bicarbonate condition. J. Microbiol. Biotechnol. 16: 1448-1452
  29. Kyotani, S., Y. Nishioka, T. Okamura, T. Tanaka, M. Miyazaki, and S. Tanada. 1992. A study of embolizing materials for chemo-embolization therapy of hepatocellular carcinoma: Antitumor effect of cis-diamminedichloroplatinum (II) albumin microspheres, containing chitin and treated with chitosan on rabbits with VX2 hepatic tumors. Pharm. Bull. 40: 2814- 2816 https://doi.org/10.1248/cpb.40.2814
  30. Lehmann, J. M., L. B. Moore, T. A. Smith-Oliver, et al. 1995. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270: 12953-12956 https://doi.org/10.1074/jbc.270.22.12953
  31. Lehoux, J. G. and F. Grondin. 1993. Some effects of chitosan on liver function in the rat. Endocrinology 132: 1078-1084 https://doi.org/10.1210/en.132.3.1078
  32. Lehr, C., J. A. Bouwatra, E. H. Schacht, and H. E. Junginer. 1992. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 76: 43-49
  33. Lynedjian, P. B., A. Gjinovci, and A. E. Renold. 1988. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J. Biol. Chem. 263: 740-744
  34. Migliorini, R. H. 1971. Early changes in the levels of liver glycolytic enzymes after total pancreatectomy in the rat. Biochim. Biophys. Acta 244: 125-128 https://doi.org/10.1016/0304-4165(71)90128-0
  35. Mima, S., M. Miya, R. Iwamoto, and S. Yoshikawa. 1983. Highly deacetylated chitosan and its properties. J. Appl. Polym. Sci. 28: 1909-1917 https://doi.org/10.1002/app.1983.070280607
  36. Miura, T., M. Usami, Y. Tsuura, H. Ishida, and Y. Seino. 1995. Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice. Biol. Pharm. Bull. 18: 1623-1625 https://doi.org/10.1248/bpb.18.1623
  37. Murata, J., I. Saiki, T. Makabe, Y. Tsuta, S. Tokura, and I. Azuma. 1999. Inhibition of tumor-induced angiogenesis by sulfated chitin derivatives. Cancer Res. 51: 22-26
  38. Oh, H. M., S. J. Lee, M. H. Park, H. S. Kim, H. C. Kim, J. H. Yoon, G. S. Kwon, and B. D. Yoon. 2001. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 23: 1229-1234 https://doi.org/10.1023/A:1010577319771
  39. Reaven, G. M. 1997. Banting lecture. Role of insulin resistance in human disease. Nutrition 13: 64-66
  40. Saltiel, A. R. and J. M. Olefsky. 1996. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45: 1661-1669 https://doi.org/10.2337/diabetes.45.12.1661
  41. Seifter, S., S. Dayton, B. Novic, and E. Muntwyler. 1950. The estimation of glycogen with the anthrone reagent. Arch. Biochem. Biophys. 50: 191-200
  42. Son, M. K., H. D. Shin, T. L. Huh, J. H. Jang, and Y. H. Lee. 2005. Novel cationic microbial polyglucosamine biopolymer from new Enterobacter sp. BL-2 and its bioflocculation efficacy. J. Microbiol. Biotechnol. 15: 626-632
  43. Spiegelman, B. M. 1998. PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507- 514 https://doi.org/10.2337/diabetes.47.4.507
  44. Park, S. A., M. S. Choi, M. J. Kim, U. J. Jung, H. J. Kim, and M. K. Lee. 2006. Hypoglycemic and hypolipidemic action of Du-zhong (Eucommia ulmoides Oliver) leaves water extract in C57BL/KsJ-db/db mice. J. Ethnopharmacol. 107: 412-417 https://doi.org/10.1016/j.jep.2006.03.034
  45. Park, S. A., M. S. Choi, S. Y. Cho, J. S. Seo, and M. K. Lee. 2006. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci. 79: 1207-1213 https://doi.org/10.1016/j.lfs.2006.03.022
  46. Toeda, K. and R. Kurane. 1991. Microbial flocculant from Alcalgenes cupidus KT 201. Agric. Biol. Chem. 55: 2663- 2664 https://doi.org/10.1271/bbb1961.55.2663
  47. Valera, A. and F. Bosch. 1994. Glucokinase expression in rat hepatoma cells induces glucose uptake and is rate limiting in glucose utilization. Eur. J. Biochem. 222: 533-539 https://doi.org/10.1111/j.1432-1033.1994.tb18895.x
  48. Watanebe, M., Y. Suzuki, K. Sasaki, Y. Nakashimada, and N. Nishio. 1999. Flocculating property of extracellular polymeric substance derived from a marine photosynthetic bacterium, Rhodovulum sp. J. Biosci. Bioeng. 87: 625-629 https://doi.org/10.1016/S1389-1723(99)80125-X
  49. Whitmore, F. A. 1992. A hemagglutinating substance in chitin. Biotechniques 12: 202-207
  50. Whitton, P. D. and D. A. Hems. 1975. Glycogen synthesis in the perfused liver of streptozotocin-diabetic rats. Biochem. J. 150: 153-165 https://doi.org/10.1042/bj1500153
  51. Wu, Z. H., Q. N. Ping, W. E. I. Yi, and J. M. Lai. 2004. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol. Sin. 25: 966-972
  52. Yokoi, H., T. Aratake, J. Hirose, S. Hayashi, and Y. Takasaki. 2001. Simultaneous production of hydrogen and bioflocculant by Enterbacter sp. BY-29. World J. Microbiol. Biotechnol. 17: 609-631 https://doi.org/10.1023/A:1012463508364
  53. Yoon, S. H., K. J. Song, S. J. Go, and J. C. Ryu. 1998. Production of biopolymer flocculant by Bacillus subtillis TB-11. J. Microbiol. Biotechnol. 8: 606-612
  54. Young, P. W., D. R. Buckle, B. C. Cantello, and S. A. Smith. 1998. Idendification of high affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator activated receptor gamma. J. Pharmacol. Exp. Ther. 284: 751-759
  55. Yu, K. W., K. S. Shin, Y. M. Choi, and H. J. Suh. 2004. Macrophage stimulating activity of exo-biopolymer from submerged culture of Lentinus edodes with rice bran. J. Microbiol. Biotechnol. 14: 658-664
  56. Zacour, A. C., M. E. Silva, P. R. Cecon, E. A. Bambirra, and E. C. Vieira. 1992. Effect of dietary chitin on cholesterol absorption and metabolism in rats. J. Nutr. Sci. Vitaminol. 38: 609-613 https://doi.org/10.3177/jnsv.38.609