참고문헌
- Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
- Amador, P., F. Borges, and M. Corte-Real. 1996. Biochemical characterization of a mutant of the yeast Pichia anomala derepressed for malic acid utilization in the presence of glucose. FEMS Microbiol. Lett. 141, 227-231 https://doi.org/10.1111/j.1574-6968.1996.tb08389.x
- Ansanay, V., S. Dequin, C. Camarasa, V. Schaeffer, J. Grivet, B. Blondin, J. Salmon, and P. Barre. 1996. Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe. Yeast 12, 215-225 https://doi.org/10.1002/(SICI)1097-0061(19960315)12:3<215::AID-YEA903>3.0.CO;2-M
- Baranowski, K. and F. Radler. 1984. The glucose-dependent transport of L-malate in Zygosaccharomyces bailii. Antonie Van Leeuwenhoek 50, 329-340 https://doi.org/10.1007/BF00394646
- Barnett, J.A. and H.L. Kornberg. 1960. The utilisation by yeast of acids of the tricarboxylic acid cycle. J. Gen. Microbiol. 23, 65-82 https://doi.org/10.2323/jgam.23.65
- Beelman, R.B. and J.F. Gallander. 1979. Wine deacidification. Adv. Food Res. 25, 1-53 https://doi.org/10.1016/S0065-2628(08)60234-7
- Benda, I. and A. Schmitt. 1969. Acid reduction in must by various strains of the genus Schizoaccharomyces. Weinberg Keller 16, 71-83
- Cassio, F. and C. Leao. 1993. A comparative study on the transport of L-malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease. Yeast 9, 743-752 https://doi.org/10.1002/yea.320090708
- Clemente-Jimenez, J.M., L. Mingorance-Cazorla, S. Martinez- Rodriguez, F.J.L. Heras-Viazquez, and F. Rodriguez-Vico. 2004. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol. 21, 149-155 https://doi.org/10.1016/S0740-0020(03)00063-7
- Corte-Real, M. and C. Leao. 1990. Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Appl. Environ. Microbiol. 56, 1109-1113
- Corte-Real, M. and C. Leao. 1992. Deacidification of grape juice with derepressed mutants of the yeast Hansenula anomala. Appl. Microbiol. Biotechnol. 36, 663-666
- Corte-Real, M., C. Leao, and N. Van Uden. 1989. Transport of L-malic acid and other dicarboxylic acids in the yeast Candida sphaerica. Appl. Environ. Microbiol. 31, 551-555
- Delcourt, F., P. Taillandier, F. Vidal, and P. Strehaiano. 1995. Influence of pH, malic acid and glucose concentrations on malic acid consumption by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 43, 321-324 https://doi.org/10.1007/BF00172832
- Fatichenti, F., G.A. Farris, P. Deiana, and S. Ceccarelli. 1984. Malic acid production and consumption by selected Saccharomyces cerevisiae under anaerobic and aerobic conditions. Appl. Microbiol. Biotechnol. 19, 427-429 https://doi.org/10.1007/BF00454382
- Fuck, E., G. Stark, and F. Radler. 1973. Malic acid metabolism in Saccharomyces II. Partial purification and characteristics of a 'malic' enzyme. Arch. Mikrobiol. 89, 223-231 https://doi.org/10.1007/BF00422202
- Gallander, J.F. 1977. Deacidification of eastern table wines with Schizosaccharomyces pombe. Am. J. Enol. Vitic. 28, 65-68
- Gao, C. and G.H. Fleet. 1995. Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiol. 12, 65-71 https://doi.org/10.1016/S0740-0020(95)80080-8
- Goodban, A.E. and J.B. Stark. 1957. Rapid method for determination of malic acid. Anal. Chem. 29, 283-287 https://doi.org/10.1021/ac60122a032
- Granchi, L., M. Bosco, and M. Vicenzini. 1999. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 87, 949-956 https://doi.org/10.1046/j.1365-2672.1999.00600.x
- Henick-Kling, T. 1993. Malolactic fermentation, p. 289-326. In G.H. Fleet (ed.), Wine microbiology and biotechnology. Harwood Academic, Chur, Switzerland
- Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120 https://doi.org/10.1007/BF01731581
- Kuczynski, J.T. and F. Radler. 1982. The anaerobic metabolism of malate of Saccharomyces bailii and the partial purification and characterization of malic enzyme. Arch. Microbiol. 131, 266-270 https://doi.org/10.1007/BF00405891
- Kurtzman, C.P. 1998. Issatchenkia Kudryavtsev emend. Kurtzman, Smiley & Johnson, p. 221-226. In C.P. Kurtzman and J.W. Fell (eds.), The yeasts, a taxonomic study, 4th ed. Elsevier Science B.V., Amsterdam
- Las Heras-Viazquez, F.J., L. Mingorance-Cazorla, J.M. Clemente- Jimenez, and F. Rodriguez-Vico. 2003. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and internal transcribed spacers. FEMS Yeast Res. 3, 3-9 https://doi.org/10.1111/j.1567-1364.2003.tb00132.x
- Magyar, I. and I. Panyik. 1989. Biological deacidification of wine with Schizosaccharomyces pombe entrapped in Ca-alginate gel. Am. J. Enol. Vitic. 40, 233-240
- Munyon, J.R. and C.W. Nagel. 1977. Comparison of methods of deacidification of musts and wines. Am. J. Enol. Vitic. 28, 79-87
- Ness, F., F. Lavallee, D. Dubourdieu, M. Aigle, and L. Dulan. 1993. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89-94 https://doi.org/10.1002/jsfa.2740620113
- Okuma, Y., A. Endo, H. Iwasaki, Y. Ito, and S. Goto. 1986. Isolation and properties of ethanol-using yeasts with acid and ethanol tolerance. J. Ferment. Technol. 64, 379-382 https://doi.org/10.1016/0385-6380(86)90023-3
- Osothsilp, C. 1987. Genetic and biochemical studies of malic acid metabolism in Schizosaccharomyces pombe. Ph. D. thesis. University of Guelph, Guelph, Ontario, Canada
- Osothsilp, C. and R.E. Subden. 1986. Malate transport in Schizosaccharomyces pombe. J. Bacteriol. 168, 1439-1443 https://doi.org/10.1128/jb.168.3.1439-1443.1986
- Park, H.D., S.H. Kim, J.H. Shin, and I.K. Rhee. 1999. Genetic analysis of alcohol yeasts from Korean traditional liquor by polymerase chain reaction. J. Microbiol. Biotechnol. 9, 744-750
- Pines, O., S. Even-Ram, N. Elnathan, E. Battat, O. Aharonov, D. Gibson, and I. Goldberg. 1996. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: role of fumarase. Appl. Microbiol. Biotech. 46, 393-399
- Pines, O., S. Shemesh, E. Battat, and I. Goldberg. 1997. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 248-255 https://doi.org/10.1007/s002530051046
- Pretorius, I.S. 2000. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16, 675-729 https://doi.org/10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B
- Queiros, O., M. Casal, S. Althoff, P. Morades-Ferreira, and C. Leao. 1998. Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 14, 401-407 https://doi.org/10.1002/(SICI)1097-0061(19980330)14:5<401::AID-YEA234>3.0.CO;2-T
- Radler, F. 1993. Yeasts-metabolism of organic acids, p. 165-182. In G.H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic, Chur, Switzerland
- Ramon-Portugal, F., I. Seiller, P. Taillandier, J.L. Favarel, F. Nepveu, and P. Strehaiano. 1999. Kinetics of production and consumption of organic acids during alcoholic fermentation by Saccharomyces cerevisiae. Food Technol. Biotechnol. 37, 235-240
- Rankine, B.C. 1966. Decomposition of L-malic acid by wine yeasts. J. Sci. Food Agric. 17, 312-316 https://doi.org/10.1002/jsfa.2740170707
- Rodriquez, S.B. and R.J. Thornton. 1989. A malic acid-dependent mutant of Schizosaccharomyces malidevorans. Arch. Microbiol. 152, 564-566 https://doi.org/10.1007/BF00425487
- Rodriquez, S.B. and R.J. Thornton. 1990. Factors influencing the utilization of L-malate by yeasts. FEMS Microbiol. Lett. 72, 17-22
- Rosini, G. and M. Ciani. 1993. Influence of sugar type and level on malate metabolism of immobilized Schizosaccharomyces pombe cells. Am. J. Enol. Vitic. 44, 113-117
- Ruffner, H.P. 1982. Metabolism of tartaric and malic acids in Vitis. Vitis 21, 247-259
- Saayman, M., H.J.J. Van Vuuren, W.H. Van Zyl, and M. Viljoen- Bloom. 2000. Differential uptake of fumarate by Candida utilis and Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 54, 792-798 https://doi.org/10.1007/s002530000469
- Saitou, N., M. Nei, and L.S. Lerman. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
- Schwartz, H. and F. Radler. 1988. Formation of L(-)malate by Saccharomyces cerevisiae during fermentation. Appl. Microbiol. Biotechnol. 27, 553-560 https://doi.org/10.1007/BF00451631
- Snow, P.G. and J.F. Gallander. 1979. Deacidification of white table wines through partial fermentation with Schizosaccharomyces pombe. Am. J. Enol. Vitic. 30, 45-48
- Subden, R.E., A. Krizus, C. Osothsilp, M. Viljoen, and H.J.J. Van Vuuren. 1998. Mutational analysis of the malate pathways in Schizosaccharomyces pombe. Food Res. Int. 31, 37-42 https://doi.org/10.1016/S0963-9969(98)00056-8
- Taillandier, P., J.P. Riba, and P. Strehaiano. 1988. Malate utilization by Schizosaccharomyces pombe. Biotechnol. Lett. 10, 469-472 https://doi.org/10.1007/BF01027058
- Taillandier, P. and P. Strehaiano. 1991. The role of L-malic acid in the metabolism of Schizosaccharomyces pombe: substrate consumption and cell growth. Appl. Microbiol. Biotechnol. 35, 541-543
- Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgens. 1997. The CLUSTAL X windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882
- Thornton, R.J. and S.B. Rodriguez. 1996. Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions. Food Microbiol. 13, 475-482 https://doi.org/10.1006/fmic.1996.0054
- Torija, M.J., N. Rozes, M. Poblet, J.M. Guillamon, and A. Mas. 2001. Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79, 345-352 https://doi.org/10.1023/A:1012027718701
- Volschenk, H., M. Viljoen, J. Grobler, B. Petzold, F. Bauer, R.E. Subden, R.A. Young, A. Lonvaud, M. Denayrolles, and H.J.J. Van Vuuren. 1997. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 253-257 https://doi.org/10.1038/nbt0397-253
- Volschenk, H., M. Viljoen-Bloom, R.E. Subden, and H.J.J. Van Vuuren. 2001. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast 18, 963-970 https://doi.org/10.1002/yea.743
- Wibowo, D., R. Eschenbruch, C.R. Davis, G.H. Fleet, and T.H. Lee. 1985. Occurrence and growth of lactic acid bacteria in wine: a review. Am. J. Enol. Vitic. 24, 1-4
- Yokotsuka, K., A. Otaki, A. Naitoh, and H. Tanaka. 1993. Controlled simultaneous deacidification and alcohol fermentation of a high-acid grape must using two immobilized yeasts, Schizosaccharomyces pombe and Saccharomyces cerevisiae. Am. J. Enol. Vitic. 44, 371-377