Bacterial Diversity at Different Depths in Lead-Zinc Mine Tailings as Revealed by 16S rRNA Gene Libraries

  • Zhang, Han-Bo (Key Laboratory of Conservation and Utilization for Bio-resources, Yunnan University) ;
  • Shi, Wen (Department of Biology, Yunnan University) ;
  • Yang, Ming-Xia (Department of Biology, Yunnan University) ;
  • Sha, Tao (Key Laboratory of Conservation and Utilization for Bio-resources, Yunnan University) ;
  • Zhao, Zhi-Wei (Key Laboratory of Conservation and Utilization for Bio-resources, Yunnan University)
  • Published : 2007.12.31

Abstract

Bacterial communities at 10 cm, 100 cm, and 200 cm depths in a 100-year-old lead-zinc tailing heap were evaluated by constructing 16S rRNA gene libraries. In total, 98 operational taxonomic units (OTUs) were identified from 193 clones at a 3% sequence difference level. The OTU number and species richness decreased with the depth. Species composition was significantly different between the three libraries. Fifty-seven percent of the examined clones were Acidobacteria and 27% belonged to Proteobacteria. Other sequences included Chloroflexi, Firmicutes, Chlamydiae, Actinobacteria, Gemmatimonadetes, Nitrospira, and three unclassified OTUs. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria were mainly distributed in the rhizosphere of naturally colonizing plants; however, Deltaproteobacteria, Acidobacteria, and Chloroflexi tended to inhabit the deeper tailings (below the 100 cm-depth).

Keywords

References

  1. Anderson, R.T., H.A. Vrionis, I. Ortiz-Bernad, C.T. Resch, P.E. Long, R. Dayvault, K. Karp, S. Marutzky, D.R. Metzler, A. Peacock, D.C. White, M. Lowe, and D.R. Lovley. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69, 5884-5891 https://doi.org/10.1128/AEM.69.10.5884-5891.2003
  2. Benner, S.G., W.D. Gould, and D.W. Blowes. 2000. Microbial populations associated with the generation and treatment of acid mine drainage. Chem. Geol. 169, 435-448 https://doi.org/10.1016/S0009-2541(00)00219-9
  3. Chang, Y.J., A.D. Peacock, P.E. Long, J.R. Stephen, J.P. McKinley, S.J. Macnaughton, A.K.M.A. Hussain, A.M. Saxton, and D.C. White. 2001. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol. 67, 3149-3160 https://doi.org/10.1128/AEM.67.7.3149-3160.2001
  4. Dudka, S. and D.C. Adriano. 1997. Environmental impacts of metal ore mining and processing: A review. J. Environ. Qual. 26, 590-602 https://doi.org/10.2134/jeq1997.00472425002600030003x
  5. Ellis, R.J., P. Morgan, A.J. Weightman, and J.C. Fry. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69, 3223-3230 https://doi.org/10.1128/AEM.69.6.3223-3230.2003
  6. Felsensterin, J. 1989. PHYLIP-Phylogeny inference package (version 3.2). Cladistics 5, 164-166
  7. Feris, K., P. Ramsey, C. Frazar, J.N. Moore, J.E. Gannon, and W.E. Holben. 2003. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl. Environ. Microbiol. 69, 5563-5573 https://doi.org/10.1128/AEM.69.9.5563-5573.2003
  8. Filion, M., R.C. Hamelin, L. Bernier, and M. St-Arnaud. 2004. Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Appl. Environ. Microbiol. 70, 3541-3551 https://doi.org/10.1128/AEM.70.6.3541-3551.2004
  9. Gadd, G.M. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotech. 11, 271-279 https://doi.org/10.1016/S0958-1669(00)00095-1
  10. Geissler, A. and S. Selenska-Pobell. 2005. Addition of U(VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community. Geobiology 3, 275-285 https://doi.org/10.1111/j.1472-4669.2006.00061.x
  11. Gillan, D.C., B. Danis, P. Pernet, G. Joly, and P. Dubois. 2005. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl. Environ. Microbiol. 71, 679-690 https://doi.org/10.1128/AEM.71.2.679-690.2005
  12. Hugenholtz, P., B.M. Goebel, and N.R. Pace. 1998. Impact of culture- independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765-4774
  13. Jacob, D.L. and M.L. Otte. 2004. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types. Sci. Total Environ. 333, 9-24 https://doi.org/10.1016/j.scitotenv.2004.05.005
  14. Kamnev, A.A. and D. Van Der Lelie. 2000. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci. Rep. 20, 239-258 https://doi.org/10.1023/A:1026436806319
  15. Kelly, J.J. and R.L. Tate III. 1998. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. J. Environ. Qual. 27, 609-617 https://doi.org/10.2134/jeq1998.00472425002700030019x
  16. Lasat, M.M. 2002. Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual. 31, 109-120 https://doi.org/10.2134/jeq2002.0109
  17. Mahmoud, K.K., L.G. Leduc, and G.D. Ferroni. 2005. Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). J. Microbiol. Meth. 61, 33-45 https://doi.org/10.1016/j.mimet.2004.10.022
  18. Nemergut, D.R., A.P. Martin, and S.K. Schmidt. 2004. Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl. Environ. Microbiol. 70, 1160-1168 https://doi.org/10.1128/AEM.70.2.1160-1168.2004
  19. North, N.N., S.L. Dollhopf, L. Petrie, J.D. Istok, D.L. Balkwill, and J.E. Kostka. 2004. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl. Environ. Mcirobiol. 70, 4911-4920 https://doi.org/10.1128/AEM.70.8.4911-4920.2004
  20. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R.I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178, 5636-5643 https://doi.org/10.1128/jb.178.19.5636-5643.1996
  21. Roane, T.M. and S.T. Kellogg. 1996. Characterization of bacterial communities in heavy metal contaminated soils. Can. J. Microbiol. 42, 593-603 https://doi.org/10.1139/m96-080
  22. Schippers, A., R. Hallmann, S. Wentzien, and W. Sand. 1995. Microbial diversity in uranium mine waste heaps. Appl. Environ. Microbiol. 61, 2930-2935
  23. Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer grogram for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 1501-1506 https://doi.org/10.1128/AEM.71.3.1501-1506.2005
  24. Schloss, P.D., B.R. Larget, and J. Handelsman. 2004. Integration of microbial ecology and statistics: a test to compare gene libraries. Appl. Environ. Microbiol. 70, 5485-5492 https://doi.org/10.1128/AEM.70.9.5485-5492.2004
  25. Southham, G. and T.J. Beveridge. 1992. Enumeration of thiobacilli within pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil. Appl. Environ. Microbiol. 58, 1904-1912
  26. Whitbread-Abrutat, P.H. 1997. The potential of some soil amendments to improve tree growth on metalliferous mine wastes. Plant Soil 192, 199-217 https://doi.org/10.1023/A:1004234602077
  27. Wielinga, B., J.K. Lucy, J.N. Moore, O.F. Seastone, and J.E. Gannon. 1999. Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings. Appl. Environ. Microbiol. 65, 1548-1555
  28. Yamada, T., Y. Sekiguchi, H. Imachi, Y. Kamagata, A. Ohashi, and H. Harada. 2005. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl. Environ. Microbiol. 71, 7493-7503 https://doi.org/10.1128/AEM.71.11.7493-7503.2005
  29. Zhang, H., C. Duan, B. Hu, H. Luo, T. Sha, and L. Cheng. 2003. Dynamic of heavy metals in a lead-zinc tailings deposited in different years. J. Agro-Environ. Sci. (in Chinese) 22, 67-69