인산칼슘재 브라켓과 강선사이의 마찰저항에 관한 연구

Friction of calcium phosphate brackets to stainless steel wire

  • Joo, Hyo-Jin (Department of Orthodontics, School of Dentistry, Kyunghee University) ;
  • Park, Young-Guk (Department of Orthodontics, School of Dentistry, Kyunghee University)
  • 발행 : 2007.10.31

초록

고정성 장치를 이용한 교정 치료는 심미적 개선이 주목적 중 하나이나, 금속재 브라켓은 치료기간 동안 비심미적으로 보이는 단점이 있다. 이러한 이유로 치아색과 유사한 심미적 브라켓이 선호되었으나 호선과의 마찰저항이 금속재 브라켓보다 큰 것으로 알려져 있다. 본 연구는 최근 개발된 심미적 브라켓의 일종인 인산칼슘재 브라켓의 마찰저항을 측정하고 기존 금속재 브라켓과 금속슬롯 삽입형 도재 브라켓과의 마찰저항의 차이를 구명(究明)해 보고자 하였다. 실험군으로서 인산칼슘 재질의 Hyaline II (Tomy, Tokyo, Japan) 브라켓을, 대조군으로서 metal slot이 삽입된 도자기 재질인 Clarity (3M Unitek, Monrovia, CA, USA) 브라켓과 스테인레스 스틸 금속재 브라켓인 Kosaka (Tomy, Tokyo, Japan) 브라켓을 사용하고, $0.019\;{\times}\;0.025$ 인치 스테인레스 스틸 강선 (3M Unitek, Monrovia, CA, USA)을 이용하며 결찰재는 합성고무링 (Ormco, Glendora, CA, USA)을 사용하였다. 치아의 생리학적 환경을 재현하기 위해 모의 생물학적 모형을 고안하였으며 이에 강선을 삽입하여 load cell (Push & pull gauge, RX-2 AIKOH, Osaka, Japan)로 분당 5 mm로 견인하며 만능시험기(Instron4467, Instron, Norwood, MA, USA)로 마찰저항을 측정하였다. 실험결과, 실험군인 인산칼슘 재질 브라켓의 마찰저항은 대조군인 금속슬롯 삽입형 도재 브라켓 보다 작고 (p < 0.01) 금속재 브라켓의 마찰저항보다 크게 나타나 (p < 0.05), 인산칼슘재 브라켓은 심미적 측면에서 금속재 브라켓을, 효율적 측면에서 금속슬롯 삽입형 도재 브라켓을 대체하여 사용 가능함을 시사하였다.

Esthetic brackets which resemble the color of natural teeth have been widely used. But the frictional resistance of ceramic brackets, a typical esthetic bracket, is greater than that of metal brackets. The purpose of this study was to measure the frictional resistance of the new calcium phosphate brackets (CPB) which were recently developed and to evaluate its clinical usability by comparing the frictional differences of CPB with metal brackets and metal slot inserted ceramic brackets. Methods: Experimental groups were CPB (Hyaline II, Tomy, Tokyo, Japan), metal bracket (Kosaka, Tomy, Tokyo, Japan) and metal slot inserted ceramic bracket (Clarity, 3M Unitek, Monrovia, CA, USA). All of the brackets had 0.022-inch slot sizes. The brackets were tested with $0.019\;{\times}\;0.025$ inch stainless steel wire (3M Unitek, Monrovia, CA, USA). A biologic model was used to simulate the situation which would occur during orthodontic treatment with fixed appliances. Retraction force was applied at a speed of 5 mm/min for 30 seconds. The frictional resistance was measured on a universal testing machine (Instron 4467, Instron, Norwood, MA, USA). Results: CPB showed significantly higher friction than metal brackets (p < 0.05) and lower friction than metal slot inserted ceramic brackets (p < 0.01). Conclusions: CPB can be considered to be a useful orthodontic esthetic bracket with respect to frictional resistance, as its friction is remarkably lower than that of metal slot inserted ceramic brackets.

키워드

참고문헌

  1. Tsutsumi O. Assessment of human contamination of estrogenic endocrine-disrupting chemicals and their risk for human reproduction. J Steroid Biochem Mol Biol 2005;93:325-30 https://doi.org/10.1016/j.jsbmb.2004.12.008
  2. Nishio C, da Motta AF, Elias CN, Mucha JN. In vitro evaluation of frictional forces between archwires and ceramic brackets. Am J Orthod Dentofacial Orthop 2004;125:56-64 https://doi.org/10.1016/j.ajodo.2003.01.005
  3. Jung-yul Cha, Kyung-suh Kim, Dong-choon Kim, Chung-ju Hwang. Evaluation of friction of ceramic bracket-wire combinations. Korean J Orthod 2006;36:125-351
  4. Pablo EL, Diagnosis in orthodontics. 1st Edition. Barcelona: Ladent; 2003
  5. Yamaguchi K, Nanda RS, Morimoto N, Oda Y. A study of force application, amount of retarding force, and bracket width in sliding mechanics. Am J Orthod Dentofacial Orthop 1996;109:50-6 https://doi.org/10.1016/S0889-5406(96)70162-2
  6. Kusy RP, Whitley JQ. Friction between different wire-bracket configurations and materials. Semin Orthod 1997;3:166-77 https://doi.org/10.1016/S1073-8746(97)80067-9
  7. Dowling PA, Jones WB, Lagerstrom L, Sandham JA. An investigation into the behavioural characteristics of orthodontic elastomeric modules. Br J Orthod 1998;25:197-202 https://doi.org/10.1093/ortho/25.3.197
  8. Ash Jr MM. Wheeler's dental anatomy. Physiology and occlusion. 8th edition. Philadelphia: WB Saunders; 2003
  9. Pizzoni L, Ravnholt G, Melsen B. Frictional forces related to selfligating brackets. Eur J Orthod 1998;20:283-91 https://doi.org/10.1093/ejo/20.3.283
  10. Drescher D, Bouranel C, Schumacher HA. Frictional forces between bracket and archwire. Am J Orthod Dentofacial Orthop 1989;96:397-404 https://doi.org/10.1016/0889-5406(89)90324-7
  11. Ogata RH, Nanda RS, Duncanson MG, Sinha PK, Currier GF. Frictional resistances in stainless steel bracket-wire combinations with effects of vertical deflections. Am J Orthod Dentofacial Orthop 1996;109:535-42 https://doi.org/10.1016/S0889-5406(96)70139-7
  12. Kusy RP, Whitley JQ. Effects of sliding velocity on the coefficients of friction in a model orthodontic system. Dent Mater 1989;5;235-40 https://doi.org/10.1016/0109-5641(89)90067-5
  13. Stannard JG, Gau JM, Hanna MA. Comparative friction of orthodontic wires under dry and wet conditions. Am J Orthod Dentofacial Orthop 1986;89:485-91 https://doi.org/10.1016/0002-9416(86)90006-0
  14. Angolkar PV, Kapila S, Duncanson MG Jr, Nanda RS. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. Am J Orthod Dentofacial Orthop 1990;98:499-506 https://doi.org/10.1016/0889-5406(90)70015-5
  15. Berger JL. The influence of the SPEED bracket's self ligating design on force levels in tooth movement: a comparative in vitro study. Am J Orthod Dentofacial Orthop 1990;97:219-28 https://doi.org/10.1016/S0889-5406(05)80055-1
  16. Kapila S, Angolkar PV, Duncanson MG Jr, Nanda RS. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. Am J Orthod Dentofacial Orthop 1990;98:117-26 https://doi.org/10.1016/0889-5406(90)70005-W
  17. Kusy RP, Whitley JQ. Effects of surface roughness on the coefficients of friction in model orthodontic system. J Biomech 1990;23:913-25 https://doi.org/10.1016/0021-9290(90)90356-8
  18. Prattern DH, Popli K, Germane N, Gunsolley JC. Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofacial Orthop 1990;98:398-403 https://doi.org/10.1016/S0889-5406(05)81647-6
  19. Kusy RP, Whitley JQ, Prewitt MJ. Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states. Angle Orthod 1991;61:293-302
  20. Sims AP, Waters NE, Birnie DJ, Pethybridge RJ. A comparison of the forces required to produce tooth movement in vitro using two self-ligating brackets and a pre-adjusted bracket employing two types of ligation. Eur J Orthod 1993;15:377-85 https://doi.org/10.1093/ejo/15.5.377
  21. Saunders CR, Kusy RP. Surface topography and frictional characteristics of ceramic brackets. Am J Orthod Dentofacial Orthop 1994;106:76-87 https://doi.org/10.1016/S0889-5406(94)70024-9
  22. Shivapuja PK, Berger J. A comparative study of conventional ligation and self ligation bracket systems. Am J Orthod Dentofacial Orthop 1994;106:472-80 https://doi.org/10.1016/S0889-5406(94)70069-9
  23. Keith O, Kusy RP, Whitley JQ. Zirconia brackets: an evaluation of morphology and coefficients of friction. Am J Orthod Dentofacial Orthop 1994;106:605-14 https://doi.org/10.1016/S0889-5406(94)70085-0
  24. Andreasen GF, Quevedo FR. Evaluation of frictional forces in the 0.022 $\times$ 0.028 edgewise bracket in vitro. J Biomech 1970;3:151-60 https://doi.org/10.1016/0021-9290(70)90002-3
  25. Frank CA, Nikolai RJ. A comparative study of frictional resistances between orthodontic bracket and arch wire. Am J Orthod 1980;78:593-609 https://doi.org/10.1016/0002-9416(80)90199-2
  26. Prosoki RP, Bagby MD, Erickson LC. Static frictional force and surface roughness of nickel-titanium arch wires. Am J Orthod Dentofacial Orthop 1991;100:341-8 https://doi.org/10.1016/0889-5406(91)70072-5
  27. De Franco DJ, Spiller FE Jr, von Fraunhofer JA. Frictioal resistances using Teflon-coated ligatures with various bracket - archwire combinations. Angle Orthod 1995;65:63-72
  28. Tidy DC. Frictional forces in fixed appliances. Am J Orthod Dentofacial Orthop 1989;96:249-54 https://doi.org/10.1016/0889-5406(89)90462-9
  29. Badner JR, Gruendeman GW, Sandrik JL. A comparative study of frictional forces between orthodonic brackets and arch wires. Am J Orthod Dentofacial Orthop 1991;100:513-22 https://doi.org/10.1016/0889-5406(91)70091-A
  30. Bishara SE, Olsen ME, VonWald L, Jakobsen JR. Comparison of the debonding characteristics of two innovative ceramic bracket designs. Am J Orthod Dentofacial Orthop 1999;116:86-92 https://doi.org/10.1016/S0889-5406(99)70307-0
  31. Bazakidou E, Nanda RS, Duncanson MG, Sinha P. Evaluation of frictional resistance in esthetic brackets. Am J Orthod Dentofacial Orthop 1997;112:138-44 https://doi.org/10.1016/S0889-5406(97)70238-5
  32. Keith O, Jones SP, Davies EH. The influence of bracket material, ligation force and wear on frictional resistance of orthodontic brackets. Br J Orthod 1993;20:109-15 https://doi.org/10.1179/bjo.20.2.109
  33. Omana HM, Moore RN, Bagby MD. Frictional properties of metal and ceramic brackets. J Clin Orthod 1992;26:425-32
  34. Loftus BP, Artun J, Nicholls Jl, Alonzo TA, Stoner JA. Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations. Am J Orthod Dentofacial Orthop 1999;116:336-45 https://doi.org/10.1016/S0889-5406(99)70247-7
  35. Downing A, McCabe J, Gordon P. A study of frictional forces between orthodontic brackets and archwires. Br J Orthod 1994;21:349-57 https://doi.org/10.1179/bjo.21.4.349
  36. Bourauel C, Drescher D, Plietsch R. Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance, and profilometry. Eur J Orthod 1998;20:79-92 https://doi.org/10.1093/ejo/20.1.79
  37. Kusy RP, Whitley JQ, Mayhew MJ, Buckthal JE. Surface roughness of orthodontic archwires. Angle Orthod 1988;58:33-45