우리나라 농업용 저수지의 영양상태 및 수질특성

Trophic State and Water Quality Characteristics of Korean Agricultural Reservoirs

  • Lee, Jae-Yon (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Lee, Jae-Hoon (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Shin, Kyung-Hoon (Department of Environmental Marine Science, Hanyang University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University) ;
  • An, Kwang-Guk (School of Bioscience and Biotechnology, Chungnam National University)
  • 발행 : 2007.06.30

초록

본 연구에서는 $2002{\sim}2005$년까지 측정된 한국농촌공사의 수질측정자료를 이용하여 계절별, 공간별 저수지의 부영양화 및 수질 특성을 분석하였다. TN에 의거하였을 때, 대다수(전체의 88%)의 저수지는 부영양 상태로 나타났다. OECD 기준에 의거하여 산정한 TP에 의한 영양상태에서는 전체 저수지의 26%가 부영양 상태로 나타났고, 71%는 중영양, 3%는 빈영양 상태로 나타났다. 계절적 변이는 강우 집중기인 7월에서 8월 사이에 강하게 나타나고 있었으며, 전기전도도, COD, SS, TN, TP 및 CHL 값은 강우 후에 증가하는 것으로 나타났다. TP는 전기전도도와 COD 농도가 높은 저수지에서 높은 수준으로 나타나고 있었으며, TP의 증가에 따라 CHL의 농도도 함께 증가하는 것으로 나타났다. COD와 SS는 집중 강우해에 높은 수치를 기록하였으며, TP와 CHL은 가뭄해에 비하여 약 2배정도 높은 수치를 기록하였다. 이는 인근 점 비 점오염원으로부터 장마 기간에 유기물 및 부유물, 영양염의 다량 유입이 원인으로 작용하는 것으로 나타났다. 한편 회귀분석에서는 TN: TP 비와 TP가 매우 높은 상관관계 ($R^2$=0.84, p<0.001, n=34)를 보였으며, CHL과 TP는 1차 함수관계 $(Log_{10}TP=0.5{\times}Log_{10}CHL+0.086)$를 보였다. TN, TP, CHL에 의거한 유사도 분석에서는 약 90% 수준에서 염도가 높으면서 해양 인접 지역에 위치한 그룹, 염도가 낮으면서 내륙에 위치한 그룹, 그리고 뚜렷한 위치 특성을 보이지 않는 중간적인 그룹으로 분류되었다.

For this study, we analyzed spatial and temporal patterns of trophic state and water quality over the period of $2002{\sim}2005$, using the water chemistry dataset obtained from the Korea Rural community & Agriculture corporation. Most reservoirs, based on TN, showed eutrophic (about 88% of the total). About 20% of agricultural reservoirs, based on TP, showed eutrophic after the criteria of OECD (1982), while 71% and 3% were Hesotrophic and oligotrophic, respectively. Seasonal variations were evident due to the intense monsoon rain during July${\sim}$August; conductivity, COD, SS, nutrients, and chlorophyll-${\alpha}$ (CBL) increased in the postmonsoon compared to the premonsoon. TP values had positive functional relations with conductivity, COD, and CHL values. COD and SS peaked during the intense monsoon. Mean values of TP and CHL values were two times greater in the intense monsoon than the weak monsoon. The increased TP was probably due to inorganic suspended solids from point and non-point sources during the monsoon. Ratios of TN : TP had strong in- verse relations ($R^2$=0.843, p<0.001, n=34) with TP, but not with TN (p>0.05, n=34). Log10-transformed CHL increased with TP in most P-limited reservoirs $(Log_{10}TP=0.5{\times}Log_{10}CHL+0.086)$. Similarity analysis, based TN, TP, and CHL showed that three groups were separated at 90% similarity level; One group was reservoirs with high salinity nearby the seawater, and the other two groups were reservoirs with a low salinity of the inland, and intermediate salinity, respectively.

키워드

참고문헌

  1. 국립환경연구원. 1999. 호수내 조류 대 발생에 대한 수면제어 기술에 관한연구 (II). 팔당호 수역을 중심으로 한 제어기술의 개발
  2. 김범철, 전만식, 황순진, 김재옥. 1999. 소양호 동, 식물플랑크톤의 계절 변동. 환경 연구 16: 292-299
  3. 김호섭, 황순진. 2004. 얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화. 육수지 37(2): 180-192
  4. 남귀숙, 장정렬, 이광식, 윤경섭, 이상준. 2003. 중산간 농업용 만운저수지의 수질환경특성. 한국환경농학회지 22(1): 16-25
  5. 농림부, 농업기반공사. 2001-2005. 농업용수 수질측정망 조사 보고서
  6. 농업기반공사. 2005. 효율적인 농업용 저수지 용수확보 및 이용방안 연구. 농어촌연구원
  7. 안광국, 서진원, 박석순. 2001. 대청호의 취수탑 주변의 이화학적, 생물학적 상태에 대한 계절경강우의 영향. 육수지 34(4): 327-336
  8. 안광국, 신인철. 2005. 산간 계류성 하천의 계절적 수질변동에 대한 몬순강우의 영향. 육수지 38(1): 54-62
  9. 이재수, 김영철, 황길순. 2003. 장마 전,후의 농업용 저수지 퇴적물의 변화분석. 대한토목학회지 23(4): 359-368
  10. 이혜원, 안광국, 박석순. 2002 소양호 표층수 수질의 연별 추이 및 상 . 하류 이질성 분석. 육수지 35(1): 36-44
  11. 전지홍, 윤춘경, 함종화, 김호일, 황순진. 2002. 농업용 저수지의 물리적 인자가 수질에 미치는 영향. 육수지 35(1): 28-35
  12. 최광순, 김범철, 박주현, 허우명, 임병진, 황길순, 최종수. 2001. 국내 주요 호수의 육수학적 조사(4): 주암호. 육수지 34(1): 30-44
  13. 최선화, 김호일. 2002. 우리나라 수자원과 농업용수 수질오염 실태. 농어촌과 환경 12(1): 93-103
  14. 최진규, 손재권, 구자웅, 김영주. 2001. 보령담수호 유역내 농업용저수지의 수질 변화. 농촌계획 7(1): 89-98
  15. 한명수, 유재근, 유광일, 공동수. 1993. 팔당호의 생태학적 연구 -1. 수질의연변화: 과거와 현재. 육수지 26(2): 141-149
  16. Datta. S.K. 1987. Nitrogen transformation processes in relation to improved cultural practices for lowland rice. Plant and Soil 100: 47-69 https://doi.org/10.1007/BF02370932
  17. Datta. S.K. 1995. Nitrogen transformation in wetland rice ecosystems. Fertilizer Research 42: 193-203 https://doi.org/10.1007/BF00750514
  18. Faithful, J.W and D.J, Griffiths. 2000. Turbid folw through a tropical reservoir (Lake Dalyymlpe, Queenland, Australia): Reponses to summer storm event. Lake & Reservoir Management 5: 231-247 https://doi.org/10.1046/j.1440-1770.2000.00123.x
  19. Fillery, I.R., J.R Simpson and S.K. Datta. 1986. Contribution od ammonia volatilization to total nitrogen loss after applications of urea to wetland rice fields. Fertilizer Research 8: 193-202 https://doi.org/10.1007/BF01048620
  20. Forsberg, O., S.-O. Ryding. 1980. Entrophication parameters and trophic state indices in 30 Swedish wastereceiving lakes. Arch. Hydrobiol. 89: 189-207
  21. Fuhimoto, N. and R. Sudo. 1997. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N : P supply ratios and temperatures. Limnol. Oceonogr. 42: 250-256 https://doi.org/10.4319/lo.1997.42.2.0250
  22. Goldman, J., D.A. Caron and M.R. Dennet. 1987. Nutrient cycling in a microflagellate good chain, 4. phytoplankton-microflagellate interactions. Mar. Ecol. Prog. Ser. 38: 75-87 https://doi.org/10.3354/meps038075
  23. Hutchison, C.E. 1957. A Teraties on limnology. I, Geography Physics and Chemistyr. New York, Jhon Wiley and Sons Inc. 1015pp
  24. Hwang, S.J., C.G. Yoon and S.K. Kweon. 2003. Water quality and limnology of Korean reservoirs. Paddy & Environment 1: 43-52 https://doi.org/10.1007/s10333-003-0010-7
  25. OECD. 1982. Eutrophcation of Waters: Monitoring, assessment and control, organisation for economic co-operation and evelopment. Paris, France, 154pp
  26. Smith, V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science. 221: 669-671 https://doi.org/10.1126/science.221.4611.669