고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System

  • 이두진 (한국수자원공사 수자원연구원 상하수도연구소) ;
  • 김영일 (한국수자원공사 수자원연구원 상하수도연구소) ;
  • 김성수 (한국수자원공사 수자원연구원 상하수도연구소) ;
  • 이경혁 (한국수자원공사 수자원연구원 상하수도연구소) ;
  • 박현아 (한국수자원공사 수자원연구원 상하수도연구소)
  • Lee, Doo-Jin (Water & Wastewater Research Center, Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Kim, Young-Il (Water & Wastewater Research Center, Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Kim, Sung-Su (Water & Wastewater Research Center, Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Lee, Kyung-Hyuk (Water & Wastewater Research Center, Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Park, Hyun-A (Water & Wastewater Research Center, Korea Institute of Water and Environment, Korea Water Resources Corporation)
  • 발행 : 2007.04.30

초록

깨끗하고 안전한 수돗물에 대한 소비자들의 욕구가 커짐에 따라 막, 오존, 활성탄 등 다양한 고도처리공정이 정수장에 도입되고 있다. 본 연구에서는 고도처리공정의 도입으로 인한 관로 내 잔류염소 감소 및 THM 생성특성에 대하여 살펴보았다. 오존, 활성탄, 오존/GAC 공정별 DOC 제거특성과 bottle test를 이용한 잔류염소 감소 및 THM 생성특성을 평가하였다. 모든 처리공정에서 DOC 제거율보다 $UV_{254}$ 유발물질의 제거율이 우수한 것으로 나타났다. 특히, 오존공정에 의한 DOC 제거율은 기존 모래여과수 대비 약 4%에 불과하였으나, $UV_{254}$는 약 17%로 DOC 제거율보다 훨씬 더 큰 차이를 보였는데, 이는 오존에 의해 소수성 유기물이 친수성 유기물로 변환되었기 때문이다. 오존/GAC 공정이 유기물 제거에 가장 효과적이었으며, 모래여과, 오존, GAC, 그리고 오존/GAC공정을 거친 처리수의 잔류염소 감소계수는 각각 0.0230, 0.0307, 0.0117 그리고 0.0098 $hr^{-1}$ 나타났으며, 190시간 반응 이후 모래여과수는 THM이 81.8 ${\mu}g/L$ 생성된 반면, 오존, GAC, 그리고 오존/GAC의 처리수는 모래여과수에 비해 각각 6.0, 26.2, 30.3% 적게 생성되었다. 결론적으로 고도처리공정에 의해 관로 내 잔류염소의 지속성이 증대되었으며, THM 생성 또한 감소하는 것으로 나타났다.

According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

키워드

참고문헌

  1. Owen, D. M., Amy, G. L., Chowdhury, Z. K., Paode, R., Mccoy, G., and Viscosil, K., 'NOM Characterization and Treatability,' AWWA, 87(1), 46-63(1995)
  2. Suffet, I. H., Mallevialle, J., and Kawczynski, E., Advances in taste and odor treatment and control, American Water Works Association Research Foundation (1995)
  3. Kooij, D., 'Assimilable Organic Carbon as an Indicator of Bacterial Regrowth,' AWWA, 84(2), 57-65(1992) https://doi.org/10.1002/j.1551-8833.1992.tb07305.x
  4. Reckhow, D. A., Singer, P. C., and Malcolm, R. L., 'Chlorination of Humic Materials; Byproduct Formation and Chemical Interpretations, ' Environ. Sci. Technol., 24(11), 1655-1664(1990) https://doi.org/10.1021/es00081a005
  5. USEPA, United States Federal Register, 40 CFR Parts 9, 141 and 142, 71(2), 388-493(2006)
  6. Jacangelo, J. G., Demarco, J., Owen, D. M., and Randtke, S., 'Selected Processes for Removing NOM : an Overview,' AWWA, 87(1), 64-77(1995)
  7. USEPA, Enhanced coagulation and enhanced precipitative softening guidance manual, EPA815-R-99-012(1999)
  8. Crozes, G., White, P., and Marshall, M., 'Enhanced Coagulation: its Effect on NOM Removal and Chemical Costs,' AWWA, 87(1), 78-89(1995) https://doi.org/10.1002/j.1551-8833.1995.tb06303.x
  9. Matilainen, A., Vieno, N. Tuhkanen, T., 'Efficiency of the activated carbon filtration in the natural organic matter removal,' Environ. Int., 32(3) 324-331 (2006) https://doi.org/10.1016/j.envint.2005.06.003
  10. Chin, A. and Berube, P.R., 'Removal of Disinfection by-Product Precursors with Ozone-UV Advanced Oxidation Process,' Water Res., 39(10), 2136-2144(2005) https://doi.org/10.1016/j.watres.2005.03.021
  11. Chang, C. N., Ma, Y. S. and Zing, F. F., 'Reducing the Formation of Disinfection by-Products by Pre-ozonation,' Chemosphere, 46(1), 21-30(2002) https://doi.org/10.1016/S0045-6535(01)00195-3
  12. Kainulainen, T. K., Tuhkanen, T. A., Vartiainen, T. K. and Kalliokoski, P. J., 'Removal of Residual Organics from Drinking Water by Ozonation and Activated Carbon Filtration: A Pilot Plant Study,' Ozone Sci. Eng., 17(4), 449-462(1995) https://doi.org/10.1080/01919519508547348
  13. 한국수자원공사, 한강수계를 중심으로 한 맛 . 냄새의 효율적 제거(3차년도), 한국수자원공사(2005)
  14. Stevenson, F. J., Reactive Functional Groups, Humus Chemistry: Genesis, Composition, Reaction, John Wiley & Sons, Inc., New York, 212-235(1994)
  15. Hallama, N. B., Westa, J. R., Forstera, C. F., Powell, J. C., and Spencer, I., 'The Decay of Chlorine associated with the Pipe Wall in Water Distribution Systems,' Water Res., 36(14), 3479-3488(2002) https://doi.org/10.1016/S0043-1354(02)00056-8
  16. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 20th ed.,(l998)
  17. Amy, G. L., Tan, L., and Davis, M. K., 'The Effect of Ozonation and Activated Carbon Adsorption on Trihalomethane Speciation,' Water Res., 25(2), 191-202(1991) https://doi.org/10.1016/0043-1354(91)90029-P
  18. Marhaba T. F. and Van D., 'Chlorinated Disinfection By-Product Formation Potential of Dissolved Organic Matter Fractions at an Ozonation Water Treatment Plant,' Advances in Environ. Res., 3(3), 255-268(1999)
  19. Chang, P. C., Chang E. E., and Liang, C. H., 'NOM Characteristics and Treatabilities of Ozonation Processes,' Chemosphere, 46(6), 929-936(2002) https://doi.org/10.1016/S0045-6535(01)00181-3
  20. 구윤희, 배수시스템에서의 수질변동 특성: 잔류염소와 THMs을 중심으로, 서울시립대학교 박사학위논문(2004)
  21. Galapate, R. P., Baes, A. U., and Okada, M., 'Transformation of Dissolved Organic Matter during Ozonation: Effects on Trihalomethane Formation Potential,' Water Res., 35(9), 2201-2206(2001) https://doi.org/10.1016/S0043-1354(00)00489-9
  22. Nissinen, T. K., Miettinen, I. T., Martikainen, P. J., and Vartiainen, T., 'Molecular size distribution of natural organic matter in raw and drinking waters,' Chemosphere, 45( 6-7), 865-873(2001) https://doi.org/10.1016/S0045-6535(01)00103-5
  23. Campos, C. and Harmant, Ph., 'Assessing the impact of dissolved organic carbon changes on disinfectant stability in a distribution system,' Water Sci. Tech-Water Supply, 2(3), 251-257(2002) https://doi.org/10.2166/ws.2002.0110
  24. Ko, Y. W., Abbt-Braun, G., and Frimmel, F. H., 'Effect of Preozonation on the Formation of Chlorinated Disinfection By-products for River Ruhr,' Acta hydrochim. hydrobiol., 28(5), 256-261(2000) https://doi.org/10.1002/1521-401X(200005)28:5<256::AID-AHEH256>3.0.CO;2-B
  25. Hu, J., Wang, Z., Ng, W., and Ong, S., 'Disinfection byproducts in water produced by ozonation and chlorination,' Environ. Monitoring Assess., 59(1), 81-93(1999) https://doi.org/10.1023/A:1006076204603
  26. Westerhoff, P., Debroux, J., Aiken, G., and Amy, G., 'Ozone-induced Changes in Natural Organic Matter(NOM) Structure,' Ozone Sci. Eng., 21(6), 551-570(1999) https://doi.org/10.1080/01919512.1999.10382893