항당뇨약 Rosiglitazone의 혈관 수축성에 대한 이중성 조절

Biphasic Effects of Rosiglitazone on Agonist-induced Regulation of Vascular Contractility

  • 박진건 (대구가톨릭대학교 약학대학 약물학교실) ;
  • 제현동 (대구가톨릭대학교 약학대학 약물학교실)
  • Park, Jin-Gun (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu) ;
  • Je, Hyun-Dong (Department of Pharmacology, College of Pharmacy, Catholic University of Daegu)
  • 발행 : 2007.10.31

초록

Rosiglitazone ($Avandia^{(R)}$) represents a new class of antidiabetic drugs which are $PPAR{\gamma}$ agonists. The present study was undertaken to determine whether the new antidiabetic rosiglitazone influences on the agonist-induced regulation of vascular smooth muscle contraction as an antihypertensive and, if so, to investigate the related mechanism. Endothelium-denuded arterial rings from male Sprague-Dawley rats were used and isometric contractions were recorded using a computerized data acquisition system. Rosiglitazone decreased Rho-kinase activating agonist (NaF or thromboxane $A_2$ mimetic)-induced contraction but not depolarization- or phorbol ester-induced contraction. Surprisingly, it slightly potentiated the latter contraction possibly opening a voltage-dependent calcium channel by its chemical structure on 50 mM KCI- or $1{\mu}M$ phorbol 12,13-dibutyrate-induced vasoconstriction. In conclusion, this study provides the evidence and possible related mechanism concerning the biphasic effect of an antidiabetic rosiglitazone as a possible antihypertensive on the agonistinduced contraction in rat aortic rings regardless of endothelial function.

키워드

참고문헌

  1. Touyz, R. M. and Schiffrin, E. L. : Peroxisome proliferator-activated receptors in vascular biology-molecular mechanisms and clinical implications. Vascul. Pharmacol. 45, 19 (2006) https://doi.org/10.1016/j.vph.2005.11.014
  2. Panchapakesan, U., Chen, X. M. and Pollock, C. A. : Drug insight: thiazolidinediones and diabetic nephropathy-relevance to renoprotection. Nat. Clin. Pract. Nephrol. 1, 33 (2005) https://doi.org/10.1038/ncpneph0029
  3. Kurtz, T. W. : New treatment strategies for patients with hypertension and insulin resistance. Am. J. Med. 119, S24 (2006) https://doi.org/10.1016/j.amjmed.2006.01.011
  4. Chetty, V. T. and Sharma, A. M. : Can PPARgamma agonists have a role in the management of obesity related hypertension? Vascular Pharmacology 45, 46 (2006) https://doi.org/10.1016/j.vph.2005.11.010
  5. Nobe, K. and Paul, R. J. : Distinct pathways of $Ca^{2+}$ sensitization in porcine coronary artery: effects of Rho-related kinase and protein kinase C inhibition on force and intracellular $Ca^{2+}$. Circ. Res. 88, 1283 (2001)
  6. Cobine, C. A., Callaghan, B. P. and Keef, K. D.: Role of L-type calcium channels and PKC in active tone development in rabbit coronary artery. Am. J. Physiol. Heart Circ. Physiol. 292(6), H3079 (2007) https://doi.org/10.1152/ajpheart.01261.2006
  7. Somlyo, A. P. and Somlyo, A. V : From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta. Physiol. Scand. 164, 437 (1998)
  8. Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. : $Ca^{2+}$-dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548 (2003) https://doi.org/10.1161/01.RES.0000090998.08629.60
  9. Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S.: Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990 (1997)
  10. Murphy, R. A. : Myosin phosphorylation and crossbridge regulation in arterial smooth muscle. Hypertension 4, 3 (1982)
  11. Amano, M., Ito, M., Kimura, K., Fukata, Y, Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. : Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246 (1996)
  12. Kitazawa, T., Masuo, M. and Somlyo, A. P. : Protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc. Natl. Acad. Sci. USA 88, 9307 (1991)
  13. Leung, T., Manser, E., Tan, L. and Lim, L. : A novel serine/ threonine kinase binding the Ras-related RhoA GXPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051 (1995)
  14. Gilman, A. G.: Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J. Clin. Invest. 73, 1 (1984)
  15. Gohla, A., Schultz, G. and Offermanns, S. : Roles for G(12)/ G(13) in agonist-induced vascular smooth muscle cell contraction. Circ. Res. 87, 221 (2000)
  16. Blackmore, P. F. and Exton, J. H. : Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J. Biol. Chem. 261, 11056 (1986)
  17. Jeon, S. B., Jin, E, Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. : A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343(1), 27 (2006) https://doi.org/10.1016/j.bbrc.2006.02.120
  18. Cockcroft, S. and Taylor, J. A. : Fluoroaluminates mimic guanosine 5'-[gamma-thio]triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes. Role for the guanine nucleotide regulatory protein Gp in signal transduction. Biochem. J. 241, 409 (1987)
  19. Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. : Thromboxane $A_2$-induced contraction of rat caudal arterial smooth muscle involves activation of $Ca^{2+}$ entry and $Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763 (2005) https://doi.org/10.1042/BJ20050237
  20. Asano, M. and Nomura, Y.: Comparison of inhibitory effects of Y-27632, a Rho kinase inhibitor, in strips of small and large mesenteric arteries from spontaneously hypertensive and normotensive Wistar-Kyoto rats. Hypertens. Res. 26, 97 (2003) https://doi.org/10.1291/hypres.26.97
  21. Nissen, S. E. and Wolski, K.: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356(24), 2457 (2007) https://doi.org/10.1056/NEJMoa072761
  22. Polikandriotis, J. A., Mazzella, L. J., Rupnow, H. L. and Hart, C. M. : Peroxisome proliferators-activated receptor gamma ligands stimulate endothelial nitric oxide production through distinct peroxisome proliferator-activated receptor gamma-dependent mechanisms. Arterioscler. Thromb. Vase. Biol. 25(9), 1810 (2005) https://doi.org/10.1161/01.ATV.0000177805.65864.d4