DOI QR코드

DOI QR Code

Cholesterol Contents of Pork Fed Dietary β-Cyclodextrin

BCD를 섭취한 돼지의 부위별 콜레스테롤 함량

  • Kang, Hwan-Ku (Dept. of Animal Biotechnology, Kangwon National University) ;
  • Park, Byung-Sung (Dept. of Animal Biotechnology, Kangwon National University)
  • 강환구 (강원대학교 동물생명공학과) ;
  • 박병성 (강원대학교 동물생명공학과)
  • Published : 2007.02.28

Abstract

This study demonstrates that pork cholesterol levels are reduced in fattening stage swine fed $\beta-cyclodextrin({\beta}-cyclodextrin)$. The study subjects were 120 swine fed their respective chow diets containing 0, 5, 7, or 10% $\beta$-cyclodextrin for 35 consecutive days. Plasma total lipids, triglyceride and total cholesterol of the $\beta$-cyclodextrin treated group were significantly lower than those of the control group (p<0.05). The levels of plasma lipid were significantly decreased by 63.22 mg, 73.98 mg, and 82.12 mg in the fattening swine group fed $\beta$-cyclodextrin at 5%, 7%, and 10%, respectively, compared to those in the control group (p<0.05). When 5, 7, and 10% $\beta$-cyclodextrin was administered to fattening swine, the triacylglyceride levels were decreased by 56.24 mg, 55.48 mg, and 60.02 mg, and total cholesterol concentration was reduced by 25.05 mg, 27.17 mg, and 30.19 mg, respectively, compared to those in the control group (p<0.05). Excretion of total steroid significantly (p<0.05) increased with the increasing amount of $\beta$-cyclodextrin supplementation. The cholesterol levels of swine back fat, belly, loin, and ham were significantly decreased with increasing $\beta$-cyclodextrin supplementation (p<0.05). The pork cholesterol was significantly (p<0.05) reduced by 15.31% in the $\beta$-cyclodextrin treated group, compared to that of the control group. These results suggest that feeding $\beta$-cyclodextrin to fattening swine may produce novel functional pork with low cholesterol levels.

본 연구는 비육말기 돼지에서 베타사이클로덱스트린$\beta$-cyclodextrin의 급여가 돈육의 콜레스테롤 수준을 낮춘다는 것을 나타내고 있다. 120마리의 돼지에게 0, 5, 7, 10%의 $\beta$-cyclodextrin를 함유하는 사료를 35일 간 급여하였다. 혈액 총지질, 중성지방 및 총 콜레스테롤 함량은 $\beta$-cyclodextrin첨가구가 대조구에 비해서 낮게 나타났으며 처리구간 통계적인 유의차가 나타났다(p<0.05). 혈액 100 mL 당 지질은 대조구와 비교할 때 $\beta$-cyclodextrin 5.0%, $\beta$-cyclodextrin 7.0% 및 $\beta$-cyclodextrin 10.0% 첨가구에서 각각 63.22 mg, 73.98 mg, 82.12 mg의 유의적인 감소를 나타냈으며, 중성지방 56.24 mg, 55.48 mg, 60.02 mg, 총콜레스테롤 25.05 mg, 27.17 mg, 30.19 mg의 유의성 있는 감소경향을 보였다(p<0.05). 총스테로이드의 배설은 $\beta$-cyclodextrin 첨가수준이 증가할수록 대조구에 비해서 유의적으로 높게 나타났다(p<0.05). 돼지고기의 부위별, 등지방, 삼겹살, 등심 및 햄의 콜레스테롤 함량은 대조구에 비해서 $\beta$-cyclodextrin 첨가수준이 높아질수록 유의적인 감소경향을 나타냈다(p<0.05). 돼지고기의 콜레스테롤 함량 감소율은 $\beta$-cyclodextrin 첨가구가 대조구와 비교할 때 15.31% 이상의 높은 감소율을 나타냈다(p<0.05). 본 연구 결과는 비육말기 돼지사료 내 $\beta$-cyclodextrin를 혼합 급여하여서 콜레스테롤 함량이 낮아진 새로운 기능성 돈육을 생산할 수 있음을 시사해준다.

Keywords

References

  1. Grundy SM. 1983. Absorption and metabolism of dietary cholesterol. Ann Rev Nutr 3: 71-96 https://doi.org/10.1146/annurev.nu.03.070183.000443
  2. Leaf A, Weber PC. 1988. Cardiovascular effect of n-3 fatty acid. New Engl J Med 318: 549-553 https://doi.org/10.1056/NEJM198803033180905
  3. Grundy SM. 1986. Cholesterol and coronary heart disease. JAMA 256: 2849-2858 https://doi.org/10.1001/jama.256.20.2849
  4. USDA. 2000. USDA Nutrient database for standard references. Release 13. U.S. Department of agriculture, Agriculture research service, Beltsville, MD
  5. Dorado M, Martin GEM, Jimenez-Colmenero F, Masoud TA. 1999. Cholesterol and fat contents of spanish commercial pork cuts. Meat Sci 51: 321-323 https://doi.org/10.1016/S0309-1740(98)00126-0
  6. Bragagnolo N, Rodriguez DB. 2002. Simultaneous determination of total lipid, cholesterol and fatty acids in meat and back fat of suckling and adult pigs. Food Chem 79: 255-260 https://doi.org/10.1016/S0308-8146(02)00136-X
  7. Piironen V, Toivo J, Lampi AM. 2002. New data for cholesterol contents in meat, fish, milk, eggs and their products cinsumed in finland. J Food Comp Anal 15: 705-713 https://doi.org/10.1006/jfca.2002.1095
  8. Horikoshi K. 1979. Production and industrial applications of beta-cyclodextrin. Process Biochem 14: 26-30
  9. Saenger W. 1984. Structural aspects of cyclodextrins and their inclusion complexes. Incl Compounds 2: 231-243
  10. Nagatomo S. 1985. Cyclodextrins-expanding the development of their functions and applications. Chemical Economy and Engineering Review 17: 28-34
  11. News week. 1992. Betting on a guilt-free egg. Newsweek April 6: 46
  12. Smith DM, Awad AC, Bennick MR, Gill JL. 1995. Cholesterol reduction in liquid egg using $\beta$-cyclodextrin. J Food Sci 60: 691-694 https://doi.org/10.1111/j.1365-2621.1995.tb06207.x
  13. Rao R, Kumar SU, Rao DN, Divakar S. 2000. Optimization of digestion parameter for the elemination of residual $\beta$- cyclodextrin used for cholesterol reduction in egg using glucoamylase. Eur Food Res Technol 210: 231-236 https://doi.org/10.1007/s002170050015
  14. Okenfull DG, Pearce RI, Sidhu GS. 1991. Low-cholesterol dairy product. Aust J Dairy Techol 46: 110-112
  15. Yen GC, Chen CJ. 2000. Effects of fractionation and the refining process of lard on cholesterol removal by $\beta$- cyclodextrin. J Food Sci 65: 622-624 https://doi.org/10.1111/j.1365-2621.2000.tb16061.x
  16. Riottot M, Olivier P, Lutton C. 1993. Hypolipidemic effects of $\beta$-cyclodextrin in the hamster and in the genetically hypercholesterolemic rico-rat. Lipids 28: 181-188 https://doi.org/10.1007/BF02536637
  17. Frijlink HW, Eissens AC, Hefting NR, Poelstra K, Lerk CF, Meijer DKF. 1991. The effects of parenterally administered cyclodextrin on cholesterol levels in the rat. Pharm Res 8: 9-16 https://doi.org/10.1023/A:1015861719134
  18. Suzuki M, Sato A. 1985. Nutritional significance of cyclodextrins: indigestibility and hypolipidemic effects of $\beta$- cyclodextrin. J Nutr Sci Vitaminol 31: 209-223 https://doi.org/10.3177/jnsv.31.209
  19. Oliver P, Verwaerde F, Hedges AR. 1991. Subchronic toxicity of orally administered beta-cyclodextrin in rats. J Am Coll Toxicol 10: 407-419 https://doi.org/10.3109/10915819109078639
  20. Favier ML, Remesy C, Moundras C, Demigne C. 1995. Effect of cyclodextrin on plasma lipids and cholesterol metabolism in the rat. Metabolism 44: 200-206 https://doi.org/10.1016/0026-0495(95)90265-1
  21. Park BS. 2003. The biological effect of $\beta$-cyclodextrin on antithrombotic activity and plasma lipid metabolism in rats. J Anim Sci (Kor) 45: 199-210
  22. Ferezou J, Riottot M, Serougne C, Cohen-solal C, Catala I, Alguier C, Parguet M, Juste C, Lafont H, Mathe D, Corring T, Lutton C. 1997. Hypocholesterolemic action of $\beta$-cyclodextrin and its effects on cholesterol metabolism in pigs fed a cholesterol-enrich diet. J Lipid Res 38: 86-100
  23. Juste C, Catala I, Riottot M, Andre M, Parquet M, Lyun B, Bequet F, Ferezou-viala J, Serougne C, Domingo N, Lutton C, Lafont H, Corring T. 1997. Inducing cholesterol precipatation from pig bile with $\beta$-cyclodextrin and cholesterol dietary supplementation. J Hepatology 26: 711-721 https://doi.org/10.1016/S0168-8278(97)80439-4
  24. Park BS. 2006. Influence of feeding $\beta$-cyclodextrin on reducing the content of cholesterol in pork. J Korean Soc Food Sci Nutr 35: 328-334 https://doi.org/10.3746/jkfn.2006.35.3.328
  25. Park BS, Kang HG, Jang A. 2005. Influence of feeding $\beta$- cyclodextrin to laying hens on the egg production and cholesterol content of yolk. Asian Aust J Anim Sci 18: 835-840 https://doi.org/10.5713/ajas.2005.835
  26. Park BS. 2004. Effect of dietary $\beta$-cyclodextrin on egg quality and cholesterol content of egg yolks. J Korean Soc Food Sci Nutr 33: 614-620 https://doi.org/10.3746/jkfn.2004.33.4.614
  27. National Research Council. 1998. Nutrient requirements of swine. 10th edition. National Academy Press, Washington DC, USA
  28. Folch L, Lees M, Sloane-Stanley SHA. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-507
  29. Grundy SM, Ahrens Jr EH, Miettinen TA. 1965. Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J Lipid Res 6: 397-410
  30. Miettinen TA, Ahrens Jr EH, Grundy SM. 1965. Quantitative isolation and gas liquid chromatographic analysis of total dietary and fecal neutral steroids. J Lipid Res 6: 411-424
  31. Ulbrecht F, Reich H. 1992. Gas chromatographic determination of cholesterol in processed foods. Food Chem 43: 387-391 https://doi.org/10.1016/0308-8146(92)90312-P
  32. SAS Institute. 2000. $SAS^{\circledR}$ User's guide: Statistics. Version 8 edition. SAS Institute Inc., Cary, NC, USA.33
  33. Duncan DB. 1955. Multiple range and multiple F-test. Biometrics 11: 1-6 https://doi.org/10.2307/3001478
  34. Froming KH, Fridrich R, Mehnert W. 1993. Inclusion compounds of cholesterol and $\beta$-cyclodextrin. Eur J Pharm Biopharm 39: 148-152
  35. Abadie C, Hug M, Kubli C, Gains N. 1994. Effect of cyclodextrins and undigested starch on the loss of chenodeoxycholate in the faeces. Biochem J 299: 725-730 https://doi.org/10.1042/bj2990725
  36. Flourie B, Molis C, Achour L, Dupas H, Hatat C, Rambaud JC. 1993. Fate of $\beta$-cyclodextrin in the human intestine. J Nutr 123: 676-680 https://doi.org/10.1093/jn/123.4.676

Cited by

  1. In Vitro and in Vivo Evaluation of Novel Cross-Linked Saccharide Based Polymers as Bile Acid Sequestrants vol.20, pp.3, 2015, https://doi.org/10.3390/molecules20033716
  2. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages vol.35, pp.1, 2015, https://doi.org/10.5851/kosfa.2015.35.1.130