DOI QR코드

DOI QR Code

Biological Activity of Tumor Necrosis Factor-α Secreted from Smooth Muscle Cell Overexpressing FADD

FADD 과발현 평활근세포에서 분비하는 Turner Necrosis Factor-α의 작용

  • Kim, Sun-Mi (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Lee, Kyeong-Ah (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Kim, Koan-Hoi (Department of Pharmacology, School of Medicine, Pusan National University)
  • 김선미 (부산대학교 의학전문대학원 약리학교실) ;
  • 이경아 (부산대학교 의학전문대학원 약리학교실) ;
  • 김관회 (부산대학교 의학전문대학원 약리학교실)
  • Published : 2007.01.29

Abstract

This study investigated biological activity of tumor necrosis factor $(TNF)-\alpha$ secreted from smooth muscle cell (SMC) destined for death by expressing Fas associated death domain containing protein (FADD) (FADD-SMC) when the cells are grown without tetracycline in culture medium. In the absence of tetracycline the FADD-SMC secreted approximately 1000 pg/ml $TNF-\alpha$, whereas hardly detectable amount of the cytokine existed in the presence of tetracycline. The culture medium collected from the FADD-SMC grown in the absence of tetracycline increased phosphorylated form of p38 MAPK and up-regulated nuclear factor kappa B (NF-kB). The medium collected without tetracycline also caused death of L929 cells. Depletion of $TNF-\alpha$ with the soluble TNF receptor (sTNFR) inhibited the phosphorylation of p38 MAPK, the up-regulation of NF-kB activity and the death activity of the medium collected from FADD-SMC in the absence of tetracycline. These results indicate that $TNF-\alpha$ secreted from SMC undergoing death is biologically active and can affect cellular function.

세포 배양액에 tetracycline이 없는 경우 FADD를 발현하면서 사멸하는 평활근세포 (FADD-SMC)에서 분비하는 $TNF-\alpha$의 활성을 조사하였다. 배양액에 tetracycline이 없는 경우 FADD-SMC는 약 1000 pg/ml의 $TNF-\alpha$를 분비하였다. $TNF-\alpha$를 포함하는 배양액을 분리하고, 이 배양액을 정상세포에 처리한 결과 인산화한 p38 MAPK와 nuclear, factor, kappa B (NF-kB)의 활성이 증가하였다. 또한 이 배양액을 L929 세포에 처리하는 경우 세포독성이 발생하였다. NF-kB, p38 MAPK 그리고 L929 세포에 대찬 효과는 배양액에서 suluble TNF receptor를 이용하여 $TNF-\alpha$를 제거하는 경우 감소하였다.

Keywords

References

  1. Baker S.J., E.P. Reddy 1998. Modulation of life and death by the TNF receptor superfamily. Oncogene 17, 3261-3270 https://doi.org/10.1038/sj.onc.1202568
  2. Bauriedel G., R. Hutter, U. Welsch, R. Bach, H. Sievert, B. Luderitz 1999. Role of smooth muscle cell death in advanced coronary primary lesions: implications for plaque instability. Cardiovasc. Res. 41, 480-488 https://doi.org/10.1016/S0008-6363(98)00318-6
  3. Bennett M.R. 1999. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc. Res. 41, 361-368 https://doi.org/10.1016/S0008-6363(98)00212-0
  4. Biancone L., A.D. Martino, V. Orlandi, P.G. Conaldi, A. Toniolo, G. Camussi 1997. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp Med. 186, 147-152 https://doi.org/10.1084/jem.186.1.147
  5. Chinnaiyan A.M, V.M Dixit 1996. The cell-death machine. Curr. Biol. 6, 555-562 https://doi.org/10.1016/S0960-9822(02)00541-9
  6. Chinnaiyan A.M., K. O'Rourke, M. Tewari, V.M. Dixit 1995. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis, Cell 81, 505-512 https://doi.org/10.1016/0092-8674(95)90071-3
  7. Chinnaiyan A.M., C.G. Tepper, M.F. Seldin 1996. FADD/MORT1 is a common mediator of CD 95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J. Biol. Chem. 271, 4961-4965 https://doi.org/10.1074/jbc.271.9.4961
  8. Cho A., D.W. Courtman, B.L. Langille 1995. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ. Res. 76, 168-175 https://doi.org/10.1161/01.RES.76.2.168
  9. Crisby M., B. Kallin, J. Thyberg 1997. Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130, 17-27 https://doi.org/10.1016/S0021-9150(96)06037-6
  10. Flynn P.D., C.D. Byrne, T.P. Baglin, P.L. Weissberg, M.R. Bennett 1997. Thrombin generation by apoptotic vascular smooth muscle cells. Blood 89, 4378-4384
  11. Henson P.M., D.L. Bratton, V.A. Fadok 2001. Apoptotic cell removal. Curr. Biol. 11, R795-805 https://doi.org/10.1016/S0960-9822(01)00474-2
  12. Idriss H.T., J.H. Naismith 2000. TNF alpha and the TNF receptor superfamily: structure-function relationship(s), Microsc. Res. Tech. 50, 184-195 https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H
  13. Kockx M.M. 1998. Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler. Thromb. Vasc. Biol. 18, 1519-1522 https://doi.org/10.1161/01.ATV.18.10.1519
  14. Kockx M.M., A.G. Herman 1998. Apoptosis in atherogenesis: implications for plaque destabilization. Eur. Heart J. 19 Suppl G, G23-28
  15. Kockx M.M., A.G. Herman 2000. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc. Res. 45, 736-746 https://doi.org/10.1016/S0008-6363(99)00235-7
  16. Libby P. 2001. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104, 365-372 https://doi.org/10.1161/01.CIR.104.3.365
  17. MacEwan D.J. 2002. TNF ligands and receptors-a matter of life and death. Br. J. Pharmacol. 135, 855-875 https://doi.org/10.1038/sj.bjp.0704549
  18. Nagata S. 1999. Fas ligand-induced apoptosis. Annu. Rev. Genet. 33, 29-55 https://doi.org/10.1146/annurev.genet.33.1.29
  19. Proudfoot D., J.N. Skepper, L. Hegyi, M.R. Bennett, C.M. Shanahan, P.L. Weissberg 2000. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ. Res. 87, 1055-1062 https://doi.org/10.1161/01.RES.87.11.1055
  20. Schaub F.J., D.K. Han, W.C. Liles 2000. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat. Med. 6, 790-796 https://doi.org/10.1038/77521
  21. Vaux D.L., S.J. Korsmeyer 1999. Cell death in development. Cell 96, 245-254 https://doi.org/10.1016/S0092-8674(00)80564-4
  22. Walsh C.M., B.G. Wen, A.M. Chinnaiyan, K. O'Rourke, V.M. Dixit, S.M. Hedrick 1998. A role for FADD in T cell activation and development. Immunity 8, 439-449 https://doi.org/10.1016/S1074-7613(00)80549-X