Cadaverine Protects Vibrio vulnificus from Superoxide Stress

  • Kang, In-Hye (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Ju-Sim (Department of Microbiology, University of Colorado Health Science Center) ;
  • Kim, Eui-Jin (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Jeong (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2007.01.31

Abstract

An electron paramagnetic resonance (EPR) signal characteristic of the 5,5'-dimethyl-l-pyrroline-N-oxide (DMPO)-OH spin adduct, which is formed from the reaction of DMPO with superoxide radicals generated by xanthine oxidasemediated reaction, was significantly reduced by the cadaverine or Escherichia coli Mn-containing superoxide dismutase (MnSOD). Likewise, cytochrome c reduction by superoxide was inhibited by cadaverine, and the inhibition level increased in proportion to the level of cadaverine. The cadA mutant of Vibrio vulnificus, which does not produce cadaverine because of the lack of lysine decarboxylase, exhibits less tolerance to superoxide stress in comparison with wild type. The results indicate that cadaverine scavenges superoxide radicals, and protects cells from oxidative stress.

Keywords

References

  1. Blake, P. A., R. E. Weaver, and D. G. Hollis. 1980. Diseases of humans (other than cholera) caused by vibrios. Annu. Rev. Microbiol. 34: 341-367 https://doi.org/10.1146/annurev.mi.34.100180.002013
  2. Chattopadhyay, M. K., C. W. Tabor, and H. Tabor. 2003. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. USA 100: 2261-2265
  3. Finkelstein, E., G. Rosen, and E. Rauckman. 1980. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem. Soc. 102: 4994-4999 https://doi.org/10.1021/ja00535a029
  4. Fridovich, I. 1970. Quantitative aspect of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 245: 4053-4057
  5. Gaudu, P., D. Touati, V. Niviere, and M. Fontecave. 1994. The NAD(P)H:flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. J. Biol. Chem. 269: 8182-8188
  6. Ha, H. C., D. J. P. Yager, P. A. Woster, and R. A. Casero Jr. 1998. Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species. Biochem. Biophys. Res. Commun. 244: 298-303 https://doi.org/10.1006/bbrc.1998.8258
  7. Ha, H. C., N. S. Sirisoma, P. Kuppusamy, J. L. Zweier, P. M. Woster, and R. A. Casero Jr. 1998. The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl. Acad. Sci. USA 95: 11140-11145
  8. Ju, H.-M., I.-G. Hwang, G.-J. Woo, T. S. Kim, and S. H. Choi. 2005. Identification of the Vibrio vulnificus fexA gene and evaluation of its influence on virulence. J. Microbiol. Biotechnol. 15: 1337-1345
  9. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmid for DNA cloning in Gram-negative bacteria. Gene 70: 191-197 https://doi.org/10.1016/0378-1119(88)90117-5
  10. Kim, J.-S., M.-H. Sung, D.-H. Kho, and J. K. Lee. 2005. Induction of manganese-containing superoxide dismutase is required for acid tolerance in Vibrio vulnificus. J. Bacteriol. 187: 5984-5995 https://doi.org/10.1128/JB.187.17.5984-5995.2005
  11. Lee, H.-J., K.-J. Park, A. Y. Lee, S. G. Park, B. C. Park, K.-H. Lee, and S.-J. Park. 2003. Regulation of fur expression by RpoS and Fur in Vibrio vulnificus. J. Bacteriol. 185: 5891-5896 https://doi.org/10.1128/JB.185.19.5891-5896.2003
  12. Lin, J., M. P. Smith, K. C. Chapin, H. S. Baik, G. N. Bennett, and J. W. Foster. 1996. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 62: 3094-3100
  13. Massey, V. 1959. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim. Biophys. Acta 34: 255-256 https://doi.org/10.1016/0006-3002(59)90259-8
  14. Masuoka, N. and I. Kubo. 2004. Characterization of xanthine oxidase inhibition by anacardic acids. Biochim. Biophys. Acta 1688: 245-249 https://doi.org/10.1016/j.bbadis.2003.12.010
  15. McCord, J. and I. Fridovich. 1969. Superoxide dismutase. An enzymic function for erythrocuprein(hemocuprein). J. Biol. Chem. 244: 6049-6055
  16. Merrell, D. S. and A. Camilli. 1999. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 34: 836-849 https://doi.org/10.1046/j.1365-2958.1999.01650.x
  17. Merrell, D. S. and A. Camilli. 2000. Regulation of Vibrio cholerae genes required for acid tolerance by a member of the 'ToxR-like' family of transcriptional regulators. J. Bacteriol. 182: 5342-5350 https://doi.org/10.1128/JB.182.19.5342-5350.2000
  18. Minton, K. W., H. Tabor, and C. W. Tabor. 1990. Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc. Natl. Acad. Sci. USA 87: 2851-2855
  19. Neely, M. N. and E. R. Olson. 1996. Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. J. Bacteriol. 178: 5522-5228 https://doi.org/10.1128/jb.178.18.5522-5528.1996
  20. Rhee, J. E., H.-M. Ju, U. Park, B. C. Park, and S. H. Choi. 2004. Identification of the Vibrio vulnificus cadC and evaluation of its role in acid tolerance. J. Microbiol. Biotechnol. 14: 1093-1098
  21. Rhee, J. E., J. H. Rhee, P. Y. Ryu, and S. H. Choi. 2002. Identification of the cadBA operon from Vibrio vulnificus and its influence on survival to acid stress. FEMS Microbiol. Lett. 208: 245-251 https://doi.org/10.1111/j.1574-6968.2002.tb11089.x
  22. Rhee, J. E., K. S. Kim, and S. H. Choi. 2005. CadC activates pH-dependent expression of the Vibrio vulnificus cadBA operon at a distance through direct binding to an upstream region. J. Bacteriol. 187: 7870-7875 https://doi.org/10.1128/JB.187.22.7870-7875.2005
  23. Roubaud, V., S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. Zweier. 1998. Quantitative measurement of superoxide generation and oxygen consumption from leukocytes using electron paramagnetic resonance spectroscopy. Anal. Biochem. 257: 210-217 https://doi.org/10.1006/abio.1997.2542
  24. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  25. Shin, N.-R., C.-H. Baek, D.-Y. Lee, Y.-W. Cho, D.-K. Park, K.-E. Lee, K.-S. Kim, and H. -S. Yoo. 2005. luxS and smcR quorum-sensing system of Vibrio vulnificus as an important factor for in vivo survival. J. Microbiol. Biotechnol. 15: 1197-1206
  26. Shin, S., M. P. Castanie-Cornet, J. W. Foster, J. A. Crawford, C. Brinkley, and J. B. Kaper. 2001. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator. Per. Mol. Microbiol. 41: 1133-1150
  27. Tabor, C. W. and H. Tabor. 1985. Polyamines in microorganisms. Microbiol. Rev. 49: 81-99
  28. Tkachenko, A., L. Nesterova, and M. Pshenichnov. 2001. The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176: 155-157 https://doi.org/10.1007/s002030100301
  29. Yoshida, M., K. Kashiwagi, A. Shigemasa, S. Taniguchi, K. Yamamoto, H. Makinoshima, A. Ishihama, and K. Igarashi. 2004. A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J. Biol. Chem. 279: 46008-46013 https://doi.org/10.1074/jbc.M404393200