Construction of Conjugative Gene Transfer System Between E. coli and Moderately Thermophilic, Extremely Acidophilic Acidithiobacillus caldus MTH-04

  • Liu, Xianggmei (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Lin, Jianqun (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Zhang, Zheng (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Bian, Jiang (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Zhao, Qing (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Liu, Ying (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Lin, Jianqiang (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Yan, Wangming (State Key Laboratory of Microbial Technology, Shandong University)
  • Published : 2007.01.31

Abstract

A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-hostrange IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-hostrange IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The $Km^r\;and\;Sm^r$ selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study.

Keywords

References

  1. Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523 https://doi.org/10.1093/nar/7.6.1513
  2. Brierley, C. L. 1982. Microbiological mining. Sci. Am. 247: 42-51
  3. Colmer, A. R. and M. E. Hinkel. 1947. The role of microorganisms in acid mine drainage: A preliminary report. Science 106: 253-256 https://doi.org/10.1126/science.106.2751.253
  4. Datta, N., R. W. Hedges, E. J. Shaw, R. B. Sykes, and M. H. Richmond. 1971. Properties of an R factor from Pseudomonas aeruginosa. J. Bacteriol. 108: 1244-1249
  5. Davidson, M. S. and A. O. Summers. 1983. Wide-host-range plasmids function in the genus Thiobacillus. Appl. Environ. Microbiol. 46: 565-572
  6. Davison, J., M. Heusterspreute, N. Chevalier, V. Ha-Thi, and F. Brunel. 1987. Vectors with restriction site banks V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51: 275-280 https://doi.org/10.1016/0378-1119(87)90316-7
  7. De Lorenzo, V. D., L. Eltis, B. Kessler, and K. N. Timmis. 1993. Analysis of Pseudomonas gene products using $lacl^{q}$/ Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123: 17-24 https://doi.org/10.1016/0378-1119(93)90533-9
  8. Dopson, M. and E. B. Lindstrom. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65: 36-40
  9. Dopson, M., E. B. Lindstrom, and K. B. Hallberg. 2001. Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus. Extremophiles 5: 247-255 https://doi.org/10.1007/s007920100196
  10. Dopson, M., E. B. Lindstrom, and K. B. Hallberg. 2002. ATP generation during reduced inorganic compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation. Extremophiles 6: 123-129 https://doi.org/10.1007/s007920100231
  11. Edwards, K. J., P. L. Bond, and J. F. Banfield. 2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: A chemotactic response to sulphur minerals? Environ. Microbiol. 2: 324-332 https://doi.org/10.1046/j.1462-2920.2000.00111.x
  12. Gardner, M. N., S. M. Deane, and D. E. Rawlings. 2001. Isolation of a new broad-host-range IncQ-like plasmid, pTC-F14, from the acidophilic bacterium Acidithiobacillus caldus and analysis of the plasmid replicon. J. Bacteriol. 183: 3303-3309 https://doi.org/10.1128/JB.183.11.3303-3309.2001
  13. Haas, D. and B. W. Holloway. 1976. R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol. Gen. Genet. 144: 243-251 https://doi.org/10.1007/BF00341722
  14. Hallberg, K. B. and E. B. Lindstrom. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140: 3451-3456 https://doi.org/10.1099/13500872-140-12-3451
  15. Hallberg, K. B. and E. B. Lindstrom. 1996. Multiple serotypes of the moderate thermophile Thiobacillus caldus, a limitation of immunological assays for biomining microorganisms. Appl. Environ. Microbiol. 62: 4243-4246
  16. Hallberg, K. B., M. Dopson, and E. B. Lindstrom. 1996. Arsenic toxicity is not due to a direct effect on the oxidation of reduced inorganic sulfur compounds by Thiobacillus caldus. FEMS Microbiol. Lett. 145: 409-414 https://doi.org/10.1111/j.1574-6968.1996.tb08608.x
  17. Jin, S. M., W. M. Yan, and Z. N. Wang. 1992. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans. Appl. Environ. Microbiol. 58: 429-430
  18. Kamimura, K., T. Okayama, K. Murakami, and T. Sugio. 1999. Isolation and characterization of a moderately thermophilic sulfur-oxidizing bacterium. Microbios 99: 7-18
  19. Kulpa, C. F., M. T. Roskey, and M. T. Travis. 1983. Transfer of plasmid RP1 into chemolithothophic Thiobacillus neapolitanus. J. Bacteriol. 156: 434-436
  20. Liu, Y., F. J. Qi, J. Q. Lin, K. L. Tian, and W. M. Yan. 2004. Isolation and phylogenetic analysis of a moderately thermophilic acidophilic sulfur oxidizing bacterium. Acta Microbiol. Sin. 44: 382-385
  21. Lundgren, D. G. and M. Silver. 1980. Ore leaching by bacteria. Annu. Rev. Microbiol. 34: 263-283 https://doi.org/10.1146/annurev.mi.34.100180.001403
  22. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  23. Mobley, H. L. T., C. M. Chen, S. Silver, and B. P. Rosen. 1983. Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli. Mol. Gen. Genet. 191: 421- 426 https://doi.org/10.1007/BF00425757
  24. Okibe, N., M. Gericke, K. B. Hallberg, and D. B. Johnson. 2003. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl. Environ. Microbiol. 69: 1936- 1943 https://doi.org/10.1128/AEM.69.4.1936-1943.2003
  25. Peng, J. B., W. M. Yan, and X. Z. Bao. 1994. Expression of heterogenous arsenic resistance genes in the obligately autotrophic biomining bacterium Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 60: 2653-2656
  26. Peng, J. B., W. M. Yan, and X. Z. Bao. 1994. Plasmid and transposon transfer to Thiobacillus ferrooxidans. J. Bacteriol. 176: 2892-2897 https://doi.org/10.1128/jb.176.10.2892-2897.1994
  27. Rawlings, D. E. 1998. Industrial practice and the biology of leaching of metals from ores. J. Ind. Microbiol. Biotechnol. 20: 268-274 https://doi.org/10.1038/sj.jim.2900522
  28. Rawlings, D. E., H. Tributsch, and G. S. Hansford. 1999. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145: 5-13 https://doi.org/10.1099/13500872-145-1-5
  29. Rawlings, D. E. 2002. Heavy metal mining using microbes. Annu. Rev. Microbiol. 56: 65-91 https://doi.org/10.1146/annurev.micro.56.012302.161052
  30. Sand, W., K. Rohde, B. Sobotke, and C. Zenneck. 1992. Evaluation of Leptospirillum ferrooxidans for leaching. Appl. Environ. Microbiol. 58: 85-92
  31. Simon, R., U. Priefer, and A. Puhier. 1983. A broad host range mobilization system for in vitro genetic engineering: Transposon mutagenesis in Gram negative bacteria. Bio/Technology 1: 784-791 https://doi.org/10.1038/nbt1183-784
  32. Willetts, N. and B. Wilkins. 1984. Processing of plasmid DNA during bacterial conjugation. Microbiol. Rev. 48: 24-41
  33. Yankofsky, S. A., R. Gurevich, N. Grimland, and A. A. Stark. 1983. Genetic transformation of obligately chemolithotrophic thiobacilli. J. Bacteriol. 153: 652-657
  34. Zhao, Q., X. M. Liu, Y. Zhan, J. Q. Lin, and W. M. Yan. 2005. Construction of an engineered Acidithioacillus caldus with high-efficiency arsenic resistance. Acta Microbiol. Sin. 45: 675-679
  35. Zyl, L. J., S. M. Deane, and D. E. Rawlings. 2003. Analysis of the mobilization region of the broad-host-range IncQ-like plasmid pTC-F14 and its ability to interact with a related plasmid, pTF-FC2. J. Bacteriol. 185: 6104-6111 https://doi.org/10.1128/JB.185.20.6104-6111.2003