Monitoring of Microbial Diversity and Activity During Bioremediation of Crude Oil-Contaminated Soil with Different Treatments

  • Baek, Kyung-Hwa (Environmental Biotechnology, Research Center, KRIBB) ;
  • Yoon, Byung-Dae (Environmental Biotechnology, Research Center, KRIBB) ;
  • Kim, Byung-Hyuk (Environmental Biotechnology, Research Center, KRIBB) ;
  • Cho, Dae-Hyun (Environmental Biotechnology, Research Center, KRIBB) ;
  • Lee, In-Sook (Department of Life Science, Ewha Womans University) ;
  • Oh, Hee-Mock (Environmental Biotechnology, Research Center, KRIBB) ;
  • Kim, Hee-Sik (Environmental Biotechnology, Research Center, KRIBB)
  • Published : 2007.01.31

Abstract

The present study compared the microbial diversity and activity during the application of various bioremediation processes to crude oil-contaminated soil. Five different treatments, including natural attenuation (NA), biostimulation (BS), biosurfactant addition (BE), bioaugmentation (BA), and a combined treatment (CT) of biostimulation, biosurfactant addition, and bioaugmentation, were used to analyze the degradation rate and microbial communities. After 120 days, the level of remaining hydrocarbons after all the treatments was similar, however, the highest rate (k) of total petroleum hydrocarbon (TPH) degradation was observed with the CT treatment (P<0.05). The total bacterial counts increased during the first 2 weeks with all the treatments, and then remained stable. The bacterial communities and alkane monooxygenase gene fragment, alkB, were compared by denaturing gradient gel electrophoresis (DGGE). The DGGE analyses of the BA and CT treatments, which included Nocardia sp. H17-1, revealed a simple dominant population structure, compared with the other treatments. The Shannon-Weaver diversity index (H') and Simpson dominance index (D), calculated from the DGGE profiles using 16S rDNA, showed considerable qualitative differences in the community structure before and after the bioremediation treatment as well as between treatment conditions.

Keywords

References

  1. Ahn, J.-H., M.-S. Kim, M.-C. Kim, J.-S. Lim, G.-T. Lee, J. K. Yun, T. Kim, T. Kim, and J.-O. Ka. 2006. Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J. Microbiol. Biotechnol. 16: 704-715
  2. Baek, K.-H., H.-S. Kim, S.-H. Moon, I.-S. Lee, H.-M. Oh, and B.-D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905
  3. Baek, K.-H., B.-D. Yoon, I.-S. Lee, H.-M. Oh, and H.-S. Kim. 2006. Biodegradation of aliphatic aromatic hydrocarbons by Nocardia sp. H17-1. Geomicrobiol. J. 23: 253-259 https://doi.org/10.1080/01490450600760633
  4. Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Biores. Technol. 96: 1049-1055 https://doi.org/10.1016/j.biortech.2004.09.008
  5. Bong, B. W., W. R. Lahner, W. R. Sullivan, and J. R. Paterek. 2003. Degradation of straight-chain aliphatic and high-molecular weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. J. Appl. Microbiol. 94: 230-239 https://doi.org/10.1046/j.1365-2672.2003.01824.x
  6. Cheung, P. and B. K. Kinkle. 2005. Effects of nutrients and surfactants on pyrene mineralization and Mycobacterium spp. populations in contaminated soil. Soil Biol. Biochem. 37: 1401-1405 https://doi.org/10.1016/j.soilbio.2004.12.008
  7. Dua, M., A. Singh, N. Sethunathan, and A. K. Johri. 2002. Biotechnology and bioremediation: Succession and limitation. Appl. Microbiol. Biotechnol. 59: 143-152 https://doi.org/10.1007/s00253-002-1024-6
  8. Hendrichx, B., W. Dejonghe, F. Faber, W. Boenne, L. Bastiaens, W. Verstraete, E. M. Top, and D. Springael. 2006. PCR-DGGE method to assess the diversity of BTEX monooxygenase genes at contaminated sites. FEMS Microbiol. Ecol. 55: 262-273 https://doi.org/10.1111/j.1574-6941.2005.00018.x
  9. Hua, Z., Y. Chen, G. Du, and J. Chen. 2004. Effect of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World J. Microbiol. Biotechnol. 20: 25-29 https://doi.org/10.1023/B:WIBI.0000013287.11561.d4
  10. Iwamoto, T., K. Tani, K. Nakamura, Y. Suzuki, M. Kitagawa, M. Eguchi, and M. Nasu. 2000. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol. Ecol. 32: 129-141 https://doi.org/10.1111/j.1574-6941.2000.tb00707.x
  11. Jung, S.-Y., J.-H. Lee, Y.-G. Chai, and S.-J. Kim. 2005. Monitoring of microorganisms added into oil-contaminated microenvironments by terminal-restriction fragment length polymorphism analysis. J. Microbiol. Biotechnol. 15: 1170- 1177
  12. Kaplan, C. W. and C. Kitts. 2004. Bacterial succession in a petroleum land treatment unit. Appl. Environ. Microbiol. 70: 1777-1786 https://doi.org/10.1128/AEM.70.3.1777-1786.2004
  13. Kim, H.-S., B.-D. Yoon, D.-H. Choung, H.-M. Oh, T. Katsuragi, and Y. Tani. 1999. Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY16. Appl. Microbiol. Biotechnol. 52: 713- 721 https://doi.org/10.1007/s002530051583
  14. Kim, H.-S., J.-W. Jeon, S.-B. Kim, H.-M. Oh, T.-J. Kwon, and B.-D. Yoon. 2002. Surface and physico-chemical properties of glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnol. Lett. 24: 1637- 1641 https://doi.org/10.1023/A:1020309816545
  15. Kirk, J. L., L. A. Beaudette, M. Hart, P. Moutoglis, J. L. Klironomos, H. Lee, and J. T. Trevors. 2004. Methods of studying soil microbial diversity. J. Microbiol. Methods 58: 169-188 https://doi.org/10.1016/j.mimet.2004.04.006
  16. Margesin, R. and F. Schinner. 2001. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in Alpine glacier sking area. Appl. Environ. Microbiol. 67: 3127-3133 https://doi.org/10.1128/AEM.67.7.3127-3133.2001
  17. MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574
  18. Muyzer, G., S. Hottentrager, A. Teske, and C. Wawer. 1996. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. A new molecular approach to analyze the genetic diversity of mixed microbial communities, pp. 3.4.4:1- 3.4.4:23. In A. D. L. Akkermans, J. D. van Elsas, and F. J. De Bruijin (eds.), Molecular Microbial Ecology Manual, 2nd Ed. Kluwer Academic Publishers, The Netherlands
  19. Nicolaisen, M. H. and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203 https://doi.org/10.1016/S0167-7012(02)00026-X
  20. Roling, W. F., M. G. Milner, M. Jones, K. Lee, F. Daniel, R. J. P. Swannell, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68: 5537-5548 https://doi.org/10.1128/AEM.68.11.5537-5548.2002
  21. Ron, E. Z. and E. Rosenberg. 2002. Biosurfactant and oil bioremediation. Curr. Opin. Biotechnol. 13: 249-252 https://doi.org/10.1016/S0958-1669(02)00316-6
  22. Ruberto, L., S. C. Vazquez, and W. P. MacCormack. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of hydrocarbon contaminated Antarctic soil. Int. Biodeter. Biodegrad. 52: 115-125 https://doi.org/10.1016/S0964-8305(03)00048-9
  23. Sarkar, D., M. Ferguson, R. Datta, and S. Birnbaum. 2005. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Poll. 136: 187- 195 https://doi.org/10.1016/j.envpol.2004.09.025
  24. Seklemova, E., A. Pavlova, and K. Kovacheva. 2001. Biostimulation based bioremediation of diesel fuel: Field demonstration. Biodegradation 12: 311-316 https://doi.org/10.1023/A:1014356223118
  25. Shannon, C. E. and W. Weaver. 1949. The Mathematical Theory of Communication, University of Illinois Press, Urbana, IL
  26. Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688 https://doi.org/10.1038/163688a0
  27. Stapleton, R. D., G. S. Sayler, J. K. Boggs, E. L. Libelo, T. Stauffer, and W. G. Macintyre. 2000. Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environ. Sci. Technol. 34: 1991- 1999 https://doi.org/10.1021/es990827x
  28. Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol. 12: 237-241 https://doi.org/10.1016/S0958-1669(00)00205-6
  29. Watanabe, K. and N. Hamamura. 2003. Molecular and physiological approaches to understand the ecology of pollutant degradation. Curr. Opin. Biotechnol. 14: 289-295 https://doi.org/10.1016/S0958-1669(03)00059-4
  30. Widada, J., H. Nojiri, and T. Omori. 2002. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl. Microbiol. Environ. 60: 45-59