Isoforms of Glucose 6-Phosphate Dehydrogenase in Deinococcus radiophilus

  • Sung, Ji-Youn (Division of Life Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Young-Nam (Division of Life Sciences, College of Natural Sciences, Chungbuk National University)
  • Published : 2007.08.30

Abstract

Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide $(O_2^{-1})$ and peroxide $(O_2^{-2})$ generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by ${\beta}-naphthoquinone-4-sulfonic$ acid suggests the involvement of lysine at their active sites. $Cu^{2+}$ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and $30^{\circ}C$.

Keywords

References

  1. Anderson, M.B. and C.D. Anderson. 1995. Purification and characterization of Azotobacter vinelandii glucose-6-phosphate dehydrogenase: dual coenzyme specificity. Arch. Biochem. Biophys. 321, 95-100
  2. Anderson, M.B., D.J. Wise, and C.D. Anderson. 1997. Azotobacter vinelandii glucose-6-phosphate dehydrogenase properties of NAD- and NADP-linked reactions. Biochem. Biophy. Acta 1340, 268-276 https://doi.org/10.1016/S0167-4838(97)00057-5
  3. Battista, J.R., A.M. Earl, and M.J. Park. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends in Microbiol. 7, 362-365 https://doi.org/10.1016/S0966-842X(99)01566-8
  4. Benziman, M. and A. Mazover. 1973. Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphatespecific glucose-6-phosphate dehydrogenase of Acetobacter xylinum and their role in the regulation of the pentose cycle. J. Biol. Chem. 248, 1603-1608
  5. Bollag, D.M. and S.J. Edelstein. 1996. Protein method. p. 1-230, Wiley-Liss, Inc. New York, USA
  6. Brita, E.L., R.E. Wolf, Jr., M.C. Dinauer, Y. Xu, and F.C. Fang. 1999. Glucose-6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect. Immun. 67, 436-438
  7. Cacciapuoti, A.F. and T.G. Lessie. 1977. Characterization of the fatty acid-sensitive glucose-6-phosphate dehydrogenase from Pseudomonas cepacia. J. Bacteriol. 132, 555-563
  8. Cacciapuoti, A.F. and S.A. Morse. 1980. Glucose-6-phosphate dehydrogenase from Neisseria gonorrhoeae: partial characterization of the enzyme and inhibition by long-chain fatty acid acrylcoenzyme A derivatives. Can. J. Microbiol. 26, 863-873 https://doi.org/10.1139/m80-151
  9. Carroll, J.D., M.J. Daly, and K.W. Minton. 1996. Expression of recA in Deinococcus radiodurans. J. Bacteriol. 178, 130-135 https://doi.org/10.1128/jb.178.1.130-135.1996
  10. Demple. B. 1996. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon-a review. Gene 179, 53-57 https://doi.org/10.1016/S0378-1119(96)00329-0
  11. Esposito, S., S. Carfagna, G. Massaro, V. Vona, and V.D.M. Rigano. 2001. Glucose-6-phospahtedehydrogenase in barley roots: kinetic properties and localization of the isoforms. Planta 212, 627-634 https://doi.org/10.1007/s004250000443
  12. Gersten, D.M. 1996. Gel electrophoresis: Proteins, essential techniques, D. Rickwood (ed), Wiley and Sons, West Sussex, UK
  13. Gleason, F.K. 1996. Glucose-6-phosphate dehydrogenase from the Cyanobacterium, Anabaena sp. PCC 7120: purification and kinetics redox modulation. Arch. Biochem. Biophys. 334, 277-283 https://doi.org/10.1006/abbi.1996.0456
  14. Greenberg, J.T., P. Monach, J.H. Chou, P.D. Josephy, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide generating agents in Escherichia coli. Proc. Natl. Acad. Sci. 87, 6181-6185
  15. Halliwell, B. and J.M.C. Gutteridge. 1999. Antioxidant defenses, p. 105-159. In Free Radicals in Biology and Medicine, 3rd (ed) Oxford Science Publications, Oxford, UK
  16. Hansen, T., B. Schlichting, and P. Scho˝nheit. 2002. Glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: expression of the g6pd gene and characterization of an extremely thermophilic enzyme. FEMS Microbiol. Lett. 216, 249-253 https://doi.org/10.1111/j.1574-6968.2002.tb11443.x
  17. Heise, N. and F.R. Opperdoes. 1999. Purification, localization, and charaterization of glucose-6-phosphate dehydrogenase of Trypanosoma brucei. J. Mol. Biochem. Parasitol. 99, 21-32 https://doi.org/10.1016/S0166-6851(98)00176-5
  18. Honjoh, K., A. Mimura, E. Kuroiwa, T. Hagisako, K. Suga, H. Shimizu, R.S. Dubey, T. Miyamoto, S. Hatano, and M. Iio. 2003. Purification and characterization of two isoforms of glucose- 6-phosphate dehydrogenase (G6PDH) from Chlorella vulgaris C-27. Biosci. Biotechnol. Biochem. 67, 1888-1896 https://doi.org/10.1271/bbb.67.1888
  19. Ibraheem, O., I.O. Adewale, and A. Afolaya. 2005. Purification and properties of glucose-6-phosphate dehydrogenase from Aspergillus aculeatus. Biochem. Mol. Biol. 38, 584-590 https://doi.org/10.5483/BMBRep.2005.38.5.584
  20. Izawa, S., K. Maeda, T. Miki, J. Mano, Y. Inoue, and A. Kimura. 1998. Importance of glucose-6-phoshate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Biochem. J. 330, 811-817 https://doi.org/10.1042/bj3300811
  21. Levy, H.R. 1979. Glucose-6-phosphate dehydrogenase, p. 97. In A. Meister (Ed.), Advan. Enzymol. Vol. 48, John Wiley and Sons, New York, USA
  22. Lessie, T.G. and F.C. Neidhardt. 1967. Adenosine triphosphatelinked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase. J. Bacteriol. 93, 1337-1345
  23. Lessie, T.G. and J.C. Vander Wyk. 1972. Multiple form of Pseudomonas multivorans glucose-6-phosphate and 6-phosphogluconate dehydrogenase: difference in size, pyridine nucleotide specificity, and susceptibility to inhibition by adenosine 5'-triphosphate. J. Bacteriol. 110, 1107-1117
  24. Lee, I.J. and Y.N. Lee. 1995. Purification and characterization of catalase-3 of Deinococcus radiophilus ATCC 27603. J. Microbiol. 33, 239-243
  25. Lowry, O.H., N.J. Rosebrough, A.C. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
  26. Lundberg, B.E., R.E. Wolf, Jr., M.C. Dinauer, Y. Xu, and F.C. Fang. 1999. Glucose-6-phosphate dehydrogenase is required for Salmonella typhymurium virulence and resistance to reactive oxygens and nitrogen intermediates. Infec. Immun. 765, 436-438
  27. Ma, J., P.W. Hager, M.L. Howell, P.V. Phibbs, and D.J. Hassett. 1998. Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucse-6-phosphate dehydrogense, an enzyme important in resistance to methyl viologen (paraquat). J. Bacteriol. 180, 1741-1749
  28. Miki, T., Y. Tsujimoto, S. Miyabe, K. Sugiyama, S. Izawa, Y. Inoue, and A. Kimura. 1996. Oxidative stress response in yeast: purification and some properties of oxidative stress-inducible glucose-6-phosphate dehydrogenase from Hansenula mrakii. Biosci. Biotechnol. Biochem. 60, 966-970 https://doi.org/10.1271/bbb.60.966
  29. Moritz, B., K. Striegel, A. Graaf, and H. Sahm. 2000. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenase from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur. J. Biochem. 267, 3442-3452 https://doi.org/10.1046/j.1432-1327.2000.01354.x
  30. Murray, R.G.E. 1986. Family II, Deinococcaceae, p. 1035-1043. In R.E. Buchanan, N.E. Gibbons (eds), Bergey's Manual of Systematic Bacteriology, Vol. 2, Williams & Wilkins Co., Baltimore, Maryland, USA
  31. Nordberg, J. and S.J. Arner. 2001. Reactive oxygen species, antioxidant and the mammalian thioredoxin system. Free Radical Biol. Med. 31, 1287-1312 https://doi.org/10.1016/S0891-5849(01)00724-9
  32. Oh, K.A. and Y.N. Lee. 1998. Purification and characterization of catalase-2 of Deinococcus radiophilus ATCC 27603. J. Biochem. Mol. Biol. 31, 144-148
  33. Opheim, D. and R.W. Bernlohr. 1973. Purification and regulation of glucose-6-phosphate dehydrogenase from Bacillus licheniformis. J. Bacteriol. 116, 1150-1159
  34. Purwantini, E. and L. Daniels. 1996. Purification of a novel coenzyme $F_{420}$-dependent glucose phosphate dehydrogenase from Mycobacteium smegmatis. J. Bacteriol. 178, 2861-2866 https://doi.org/10.1128/jb.178.10.2861-2866.1996
  35. Rainey, F.A., M.F. Nobre, P. Schumann, E. Stackebrandt, and M.S. da Costa. 1997. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47, 510-514 https://doi.org/10.1099/00207713-47-2-510
  36. Seo, H.J. and Y.N. Lee. 2006. Occurrence of thioredoxin reductase in Deinococcus species, the UV resistant bacteria. J. Microbiol. 44, 461-465
  37. Sundaram, S., H. Karakaya, D.J. Scanlan, and N.H. Mann. 1998. Multiple oligomeric forms of glucose-6-phosphate dehydrogenase in Cyanobacteria and the role of OpcA in the assembly process. Microbiology 144, 1549-1556 https://doi.org/10.1099/00221287-144-6-1549
  38. Tian, W-N., L. D. Braunstein, K. Apse, J. Pang, M. Rose, X. Tian, and R.C. Stanton. 1999. Importance of glucose-6-phsopahte dehydrogenase activity in cell death. Am. J. Physiol. (Cell Physiol. 45) 276, C1121-C1131 https://doi.org/10.1152/ajpcell.1999.276.5.C1121
  39. Ursini, M.V., A. Parrella, G. Rosa, S. Salzano, and G. Martini. 1997. Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress. J. Biochem. 323, 801-806 https://doi.org/10.1042/bj3230801
  40. Vander Wyk, J.C. and T.G. Lessie. 1974. Purification and characterization of the Pseudomonas multivorans glucose-6-phosphate dehydrogenase active with nicotinamide adenine dinucleotide. J. Bacteriol. 120, 1033-1042
  41. Wright, D.P., H.C. Huppe, and D.H. Turpin. 1997. In vivo and in vitro studies of glucose-6-phosphate dehydrogenase from barley root plastids in relation to reductant supply for $NO_2^-$ assimilation. Plant Physiol. 114, 1413-1419 https://doi.org/10.1104/pp.114.4.1413
  42. Yun, E.J. and Y.N. Lee. 2000. Production of two different catalaseperoxidase by Deinococcus radiophilus. FEMS Microbiol. Lett. 184, 155-159 https://doi.org/10.1111/j.1574-6968.2000.tb09007.x
  43. Yun, Y.S. and Y.N. Lee. 2001. Superoxide dismutase profiles in the mesophilic Deinococcus species. J. Microbiol. 39, 232-235
  44. Yun, Y.S. and Y.N. Lee. 2003. Production of superoxide dismutase by Deinococcus radiophilus. J. Biochem. Mol. Biol. 36, 282-287 https://doi.org/10.5483/BMBRep.2003.36.3.282
  45. Yun, Y.S. and Y.N. Lee. 2004. Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV resistant bacterium. Extremophiles 8, 237-242 https://doi.org/10.1007/s00792-004-0383-6