Tidal and Sub-tidal Current Characteristics in the Kangjin Bay, South Sea, Korea

  • Ro, Young-Jae (Department of Oceanography, College of Natural Sciences, Chungnam National University)
  • Published : 2007.03.30

Abstract

This study analyzed the current meter records along with wind records for over 500 days obtained in the Kangjin Bay, South Sea, Korea spanning from March, 2003 to Nov. 2005. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, the principal axis, progressive vector diagrams. These analyses can illustrate the response of residual current to the local wind resulting in the net drift with rotational motion. Current speed ranges from -28 to 33 (cm/sec), with standard deviations from 6.5 to 12.9 (cm/sec). The harmonic analyses of the tidal current show the average form number, 0.12 with semi-diurnal type and the rectilinear orientation of the major axis toward northeast. The magnitudes of the semi-major range from 12.7 to 17.7 (cm/sec) for M2 harmonics, while for S2 harmonics, they range from 6.3 to 10.4 (cm/sec), respectively. In the spectral and coherency analysis of residual current and wind, a periodicity of 13.6 (day) is found to be most important in both records and plays an important role in the net drift of residual current. The progressive vector diagrams of residual current and wind show two types of behaviors such as unidirectional drift and rotational motion. It was also found that 3 % rule holds approximately to drive 1 (cm/sec) drift current by 30 (cm/sec) wind speed based on the correlation of the semi-major axis of wind and residual current.

Keywords

References

  1. Blackman, R.B. and J.W. Tukey. 1958. The Measurement Of Power Spectra from the Point of View of Communication Engineering. Dover Publications. 190 p
  2. Cai S., Q. Huang, and X. Long. 2003. Three-dimensional numerical model study of the residual current in the South China Sea. Oceanol. Acta, 26(5), 597-607 https://doi.org/10.1016/S0399-1784(03)00053-7
  3. Chang, S.D., C.K. Kim, and J.S. Lee. 1993. Field observations and hydraulic model experiments of tidal currents in Chinhae Bay. J. Korean Fish. Soc., 26(4), 346-352
  4. Cho, H.Y., J.W. Chae, and S.Y. Chun. 2002. Stratification and do concentration changes in Chinhae-Masan Bay. J. Korean Soc. Coast. Ocean Eng., 14(4), 295-307
  5. Cho, K.D., C.I. Cho, B.G. Lee, K.W. Cho, and D.S. Kim. 1993. Study on the water and material exchange in Deukryang Bay I. Volume transport and turnover time of sea water. J. Environ. Sci., 7(3), 311-319
  6. Duchon, C.E. 1979. Lanczos filtering in one and two dimensions. J. Appl. Met., 18, 1016-1022 https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
  7. Emery, W.J. and R.E. Thomson. 2001. Data Analysis Methods in Physical Oceanography. Elsevier. 638 p
  8. Foreman, M.G.G. 1978. Manual for tidal current analysis and prediction. Pacific Marine Science Report 78-6. Institute of Ocean Sciences, Patricia Bay, Victoria, B.C. 39 p
  9. Foreman, M.G.G., D.J. Stucchi, Y. Zhang, and A.M. Baptista. 2006. Estuarine and tidal currents in the Broughton Archipelago. Atmos. Ocean, 44(1), 47-63 https://doi.org/10.3137/ao.440104
  10. Guo, X. and T. Yanagi. 1996. Seasonal variation of residual current in Tokyo Bay, Japan-diagnostic numerical experiments. J. Oceanogr., 52, 597-616 https://doi.org/10.1007/BF02238323
  11. Jenkins, G.M. and D.G. Watts. 1968. Spectral Analysis and Its Applications. Holden-Day. 525 p
  12. Han, M.W, K.I. Chang, and Y.C. Park. 2001. Distribution and hydrodynamic model of the Keumdong oil spill in Kwangyang Bay, Korea. Environ. Int., 26(7-8), 457-463 https://doi.org/10.1016/S0160-4120(00)00110-0
  13. Kashiwai, M. 1984. Tidal residual circulation produced by a tidal vortex. Part 1. Life-history of a tidal vortex. J. Oceanogr. Soc. Japan, 40(6), 279-294 https://doi.org/10.1007/BF02302521
  14. Lee, D.I., C.K. Park, and H.S. Cho. 2005. Ecological modeling for water quality management of Kwangyang Bay, Korea. J. Environ. Manage., 74(4), 327-337 https://doi.org/10.1016/j.jenvman.2004.10.004
  15. Lee, J.C., J.C. Kim, and M.W. Park. 2006. Currents in the northeastern Gwangyang Bay. J. Korean Soc. Oceanogr., 11(4), 172-178
  16. Liu, J.T. 1992. The influence of episodic weather events on tidal residual currents: A case study at Sebastian Inlet, Florida. Estuaries, 15(2), 109-121 https://doi.org/10.2307/1352685
  17. Marinone, S.G. and M.P. Lavyn. 2005. Tidal current ellipses in a three-dimensional baroclinic numerical model of the Gulf of California. Estuar. Coast. Shelf Sci., 64, 519-530 https://doi.org/10.1016/j.ecss.2005.03.009
  18. Ou, H.W., R.C. Beardsley, D. Meyer, W.C. Boicourt, and B. Butman. 1980. An analysis of subtidal current fluctuations in the Middle Atlantic Bight. J. Phys. Oceanogr., 11(10), 1383-1392 https://doi.org/10.1175/1520-0485(1981)011<1383:AAOSCF>2.0.CO;2
  19. Park, K., H.S. Jung, H.S. Kim, and S.M. Ahn. 2005. Three-dimensional hydrodynamic-eutrophication model (HEM3D): Application to Kwang-Yang Bay, Korea. Mar. Environ. Res., 60(2), 171-193 https://doi.org/10.1016/j.marenvres.2004.10.003
  20. Pawlowicz, R., B. Beardsley, and S. Lentz. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929-937 https://doi.org/10.1016/S0098-3004(02)00013-4
  21. Ro, Y.J., W.S. Jun, K.Y. Jung, and B.H. Kim. 2005. Numerical modeling of river plume in the Kangjin Bay and its implication for the ecosystem. Proc. Autumn Meeting, 2005 Korean Soc. Oceanogr., p. 218-220
  22. Ro, Y.J. 2006. Internet-based realtime monitoring of the environmental parameters in the marine large-arc shell culture bed and its productivity assessment model. Final Report, Ministry of Marine and Fishery. 155 p
  23. Ro, Y.J. 2007. 3-D baroclinic numerical modeling of the tidal and density current in the Kangjin Bay, South Sea, Korea, Part I: Tide and tidal current. J. Korean Soc. Coast. Ocean Eng. (In Press)
  24. Yanagi, T. 1983. Generation mechanisms of tidal residual circulation. J. Oceanogr. Soc. Japan, 39(4), 156-166 https://doi.org/10.1007/BF02070259
  25. Yasuda H. 1980. Generating mechanism of the tidal residual current due to the coastal boundary layer. J. Oceanogr. Soc. Japan, 35(6), 241-252 https://doi.org/10.1007/BF02108929
  26. Wang S.Y. and M.X. Tang. 2004. Exact Confidence Interval for Magnitude-Squared Coherence Estimates. IEEE Signal. Proc. Lett., 11(3), 326-329
  27. Wong, K.C. 1998. The seasonal and subtidal variability in the source region of the Delaware Coastal Current. Estuar. Coast. Shelf Sci., 47, 1-19 https://doi.org/10.1006/ecss.1998.0341
  28. Valle-Levinson, A. and T. Matsuno. 2003. Tidal and subtidal flow along a cross-shelf transect on the East China Sea. J. Oceanogr., 59, 573-584 https://doi.org/10.1023/B:JOCE.0000009587.18145.d8