DOI QR코드

DOI QR Code

Shear Capacity of Reinforced Concrete Continuous T-Beams Externally Strengthened with Wire Rope Units

와이어로프로 외부 보강된 철근콘크리트 연속 T형 보의 전단내력

  • Published : 2007.12.31

Abstract

A simple unbonded-type shear strengthening technique for reinforced concrete beams using wire rope units is developed. Six two-span continuous T-beams externally strengthened with wire rope units and an unstrengthened control beam were tested. The main variables investigated were the amount and prestressing force of wire rope units. All specimens had the same geometrical dimension and arrangement of internal reinforcement. Influence of the distribution of vertical stresses in beam web owing to the prestressing force of wire rope units on the diagonal shear cracking load and the ultimate shear capacity of beams tested is presented. Based on the current study, it can be concluded that the amount and initial prestress of wire rope should be limited to be above 2.5 times the minimum shear reinforcement ratio specified in ACI 318-05 and below 0.6 times its own tensile strength, respectively, to ensure the enhancement of shear capacity and ductile failure mode of the strengthened beams. A numerical analysis based on the upper-bound theorem is developed to assess the shear capacity of continuous T-beams strengthened with wire rope units. From the comparisons of measured and predicted shear capacities, a better agreement is achieved in the proposed numerical analysis than in empirical equations recommended by ACI 318-05.

와이어로프 단위를 이용한 단순한 비 부착형 전단보강 기술이 개발되었다. 제안된 보강 기술에 의해 보강된 연속 T형 보 6개와 동일한 무 보강 시험체가 실험되었다. 고려된 주요 변수는 와이어로프의 양과 프리스트레스이다. 모든 시험체의 기하학적 특성 및 철근 배근을 동일하다. 와이어로프의 프리스트레스로 인한 콘크리트 복부에서의 수직응력 분포가 보의 경사균열 전단내력 및 최대 전단내력에 미치는 영향이 또한 제시되었다. 본 연구의 실험 결과로부터 제안된 보강 기술을 이용하여 철근콘크리트 보의 전단내력 향상 및 연성을 확보하기 위해서는 와이어로프 비는 ACI 기준에서 제시하는 최소 전단철근비의 2.5배 이상, 그리고 프리스트레스는 와이어로프 인장강도의 0.6배 이하로 있어야 함이 제안될 수 있었다. 와이어로프 단위로 보강된 연속 T형 보의 전단내력을 평가하기 위하여 상계치 이론을 이용한 수치해석 모델이 제시되었다. 제시된 수치해석 모델은 ACI 318-05의 전단내력 식에 비해 실험 결과와 잘 일치하였다.

Keywords

References

  1. 이원호, 임재형, '탄소섬유시트로 보강된 RC 보의 전단 보강효과에 대한 실험적 연구', 대한건축학회논문집 구조계, 20권 11호, 2004, pp.51-58
  2. ACI Committee 440, State-of-the Art Report on Fiber-Reinforced Plastic (FRP) Reinforcement for Concrete Structures (ACI 440R-96), American Concrete Institute, Farmington Hills, MI, 196, 65pp
  3. Vilnay, O., 'The Analysis of Reinforced Concrete Beams Strengthened by Epoxy-Bonded Steel Plates', The International Journal of Cement Composites and Lightweight Concrete, Vol.10, No.2, 1988, pp.391-399
  4. Triantafillou, T. C., 'Shear Strengthening of Reinforced Concrete Beams Using Epoxy-Bonded FRP Composites', ACI Structural Journal, Vol.95, No.2, 1998, pp.107-115
  5. Kim, S. Y., Yang, K. H., Byun, H. Y., and Ashour, A. F., 'Tests of Reinforced Concrete Beams Strengthened with Wire Rope Units', Engineering Structures, Vol.29, No.10, 2007, pp.2711-2722 https://doi.org/10.1016/j.engstruct.2006.12.013
  6. Teng, S., Kong, F. K., Poh, S. P., Guan, L. W., and Tan, K. H., 'Performance of Strengthened Concrete Deep Beams Predamaged in Shear', ACI Structural Journal, Vol.93, No.2, 1996, pp.159-171
  7. El-Refaie, S. A., Ashour, A. F., and Garrity, S. W., 'Sagging and Hogging Strengthening of Continuous Reinforced Concrete Beams Using Carbon Fiber-Reinforced Polymer Sheets', ACI Structural Journal, Vol.100, No.4, 2003, pp.446-453
  8. Giaccio, C., Al-Mahaidi, R., and Taplin, G, 'Experimental Study on the Effect of Flange Geometry on the Shear Strength of Reinforced Concrete T-Beams subjected to Concentrated Loads', Canadian Journal of Civil Engineering, Vol.29, No.6, 2002, pp.911-918 https://doi.org/10.1139/l02-099
  9. Bickford, J. H., An Introduction to the Design and Behavior of Bolt Joints, Marcel Dekker INC. 1990
  10. Cervenka, V. and Cervenka, J., ATENA Computer Program for Non-Linear FEM Analysis of Reinforced Concrete Structures, Cervenka Consultant, 2003
  11. 한국표준협회, 금속재료인장시험편-KS B 0801, 한국산업규격, 1981, pp.1-10
  12. Raoof, M. and Kraincanic, I., 'Analysis of Large Diameter Steel Ropes', Journal of Engineering Mechanics, ASCE, Vol.121, No.6, 1995, pp.667-675 https://doi.org/10.1061/(ASCE)0733-9399(1995)121:6(667)
  13. 양근혁, '장방향 개구부를 갖는 철근콘크리트 연속 깊은 보의 전단설계 개발', 학술진흥재단 보고서, 2006, 121pp
  14. Kupfer, H., Hilsdorf, H. K., and Rusch, H., 'Behavior of Concrete Under Biaxial Stresses', ACI Journal, Proceedings, Vol.66, No.8, 1969, pp.656-666
  15. Liu, T. C. Y., Nilson, A. H., and Slate, F. 0., 'Stress-Strain Response and Fracture of Concrete in Uniaxial and Biaxial Compression', ACI Journal, Proceedings, Vol.69, No.3, 1972, pp.291-295
  16. Nielsen, M. P., Limit Analysis and Concrete Plasticity, Prentice-Hall, Englewood Cliffs, 1984
  17. Yang, K. H., Chung, H. S., and Ashour, A. F., 'Influence of Section Depth on the Structural Behavior of Reinforced Concrete Continuous Deep Beams', Magazine of Concrete Research, Vol.59, No.8, 2007, pp.575-586 https://doi.org/10.1680/macr.2007.59.8.575
  18. Zhang, J. P., 'Diagonal Cracking and Shear Strength of Reinforced Concrete Beams', Magazine of Concrete Research, Vol.49, No.178, 1997, pp.55-65 https://doi.org/10.1680/macr.1997.49.178.55
  19. Hoang, L. C., Shear Strength of Lightly Shear Reinforced Concrete Beams, Series R, No.65, Dept. of Structural Engineering and Materials, Technical University of Denmark, 2000, 1 72pp
  20. Cho, S. H., 'Shear Strength Prediction by Modified Plasticity Theory for Short Beams', ACI Structural Journal, Vol.100, No.1, 2003, pp.105-112