DOI QR코드

DOI QR Code

Effect of Micro-Cracks on Chloride Ions Penetration of Concrete II: Examination of Critical Crack Width

미세균열이 콘크리트의 염소이온 침투에 미치는영향 II: 임계 균열폭의 고찰

  • Yoon, In-Seok (Faculty of Civil Engineering and Geoscience, TU Delft, The Netherlands / Waterproof Repair Rehabilitation Center, Korea Institute of Construction Materials)
  • 윤인석 (네델란드 델프트공과대학 토목공학부, 한국건자재시험연구원 방수보수보강센터)
  • Published : 2007.12.31

Abstract

The vulnerability of concrete to its environment is significantly dependent on the fact that concrete is a porous material. For well-consolidated and well-cured concrete, its service life is a very long and an entrance of aggressive substance might be only pores. However, for cracked concrete, cracks should be preferential channel for the penetration of aggressive substance such as chloride ions. The effect of crack on chloride penetration depends on its size for example, crack width and crack depth. The purpose of this study is examining the effect of crack width and crack depth on chloride penetration. In order to visualize chloride penetration via cracks, RCM (rapid chloride migration) testing is accomplished. Crack width is examined using an optical microscope and CMOD value is used to estimate average crack width. From the examination on the trend of chloride diffusion coefficients of concrete specimens with various crack widths, a critical crack width and a critical crack depth are found out.

다공질성 특성을 갖는 콘크리트는 충분한 다짐과 양생 조건에서 장수명을 갖으며, 유해 물질의 주요 경로는 공극이다. 그러나 균열이 발생한 콘크리트의 경우, 균열은 염소이온과 같은 유해 물질의 우선적인 침투 경로가 된다. 균열이 염소에 미치는 영향은 균열폭과 균열 깊이의 크기에 의존한다. 본 연구는 미세균열이 콘크리트의 염소이온 침투에 미치는 영향을 다룬 실험적 연구로서, 연구 목적은 균열폭과 균열 깊이 등의 균열 크기 효과가 염소이온에 미치는 영향을 고찰하는 것이다. 균열을 통한 염소이온의 침투를 시각화 하기 위하여, 급속 염소이온 침투 실험인 RCM (rapid chloride migration) 실험을 수행하였다. 균열폭과 균열 깊이는 전자 현미경으로 관찰하였고, 평균적인 균열폭을 산정하기 위하여 균열 개구 변위가 측정되었다. 다양한 균열 크기에 따른 염소이온의 침투 깊이 및 염소이온 확산계수의 변화율로부터 염소이온이 침투되지 않는 균열 깊이 및 이에 대응한 균열폭이 도출되었다.

Keywords

References

  1. 윤인석, '미세균열이 콘크리트의 염소이온 침투에 미치는 영향; 현상학적 모델', 한국콘크리트학회 논문집, 19권 1호, 2007, pp.57-65 https://doi.org/10.4334/JKCI.2007.19.1.057
  2. Yoon, In-Seok, Schlangen, Erik, Rooij, Mario de., and Van Breugel, Klaas, 'The Effect of Crack on Chloride Penetration into Concrete', Key Engineering Materials, Trans Tech Publication,.Vol.348-349, 2007, pp.769-777 https://doi.org/10.4028/www.scientific.net/KEM.348-349.769
  3. Yoon, In-Seok, Schlangen, Erik, Rooij, Mario de, and Van Breugel, Klaas, 'Critical Crack Wdith and Chloride Ingress', International RILEM Workshop on Integral Service Life Modelling of Concrete Structures, Guimaraes, Portugal, Nov. 2007 (submitted)
  4. NT Build 492, Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiment, Finland
  5. CEB, CEB Manual-Cracking and Deformations, CEB, 1985, 232pp
  6. ACI Committee 224, Control of Cracking in Concrete Structures', (ACI 224R-90) ACI Manual of Concrete Practice, ACI, Part3, 1999
  7. ACI Note 318-99, Building Code Requirements for Structural Concrete, PCA, 1999
  8. Gowripalan, N., Sirivivatnanon, V., and Lim, C. C. 'Chloride Diffusivity of Concrete Cracked in Flexure', Cement and Concrete Research, Vol.30, 2000, pp.725-730 https://doi.org/10.1016/S0008-8846(00)00216-7
  9. Federation International de la Precontrainte, CEB-FIP Model Code, Thomas Telford, London, 1990
  10. ACI, Manual of Concrete Practice, Part3, ACI, 1999
  11. British Standards Institution, ENV 1991-1-1, BSI, London, 1992
  12. British Standards Institution, BS 8110: Part 1, BSI, London, 1992
  13. Standard Association of Austrailia, AS 3600, North Sydney, 1994
  14. Reinhardt, H. W., Sosoro, M., and Zhu, X., 'Cracked and Repaired Concrete Subjected to Fluid Penetration', Materials and Structures, Vol.31, No.205, 1998, pp.74-83 https://doi.org/10.1007/BF02486468
  15. Mivelaz, P., Estancheite des Tructures en Beton Arme, Fuites au Travers d'un Element Fissure, PhD Thesis, EPFL, No.153, 1996
  16. Schiessl, P., Admissible Crack Width in Reinforced Concrete Structures, Inter-Association Colloquium on the Behavior in Service of Concrete Structures, Preliminary Reports II, Liege, 1975, pp.739-755
  17. Li, C. Q., 'Initiation of chloride-Induced Reinforcement Corrosion in Concrete Structural Members-Prediction', ACI Structural Journal, Vol.99, No.2, 2002, pp.131-141
  18. Francois, R. and Arliguie, G., 'Effect of Microcracking and Cracking on the Development of Corrosion in Reinforced Concrete Members', Magazine of Concrete Research, Vol.51, No.2, 1999, pp.143-150 https://doi.org/10.1680/macr.1999.51.2.143
  19. Mohammed, T. D., Otsuki, N., Hisada M., and Shibata, T., 'Effect of Crack Width and Bar Types on Corrosion of Steel in Concrete', Journal of Materials Journal in Civil Engineering, ASCE, Vol.3, No.2, 2001, pp.194-201
  20. TRB-AHD45, The Effect of Cracking in High Performance Concretes on Reinforcement Corrosion and Structural Durability, Transport Research Board, RPS-AHD45-2005-01, 2005

Cited by

  1. Effect of Coating System to Prevent the Deterioration of Concrete Subjected to Compressive Stress vol.16, pp.3, 2012, https://doi.org/10.11112/jksmi.2012.16.3.023