초록
최근 콘크리트의 품질과 구조물의 신뢰성을 향상시키기 위해서 고성능콘크리트의 현장 적용이 늘고 있다. 이러한 고성능콘크리트의 배합 설계 방법으로는 모르타르-굵은골재 2상계 배합 이론과 페이스트-골재 2상계 배합 이론이 있다. 이 중 모르타르-굵은골재 2상계 배합이론은 모르타르의 레올로지 특성을 부여함에 있어 반복적인 실험을 통해서 그 값을 결정해야 하는 문제점을 가지고 있다. 페이스트-골재 2상계 배합 이론은 최적 잔골재율과 단위결합재량과의 관계 및 콘크리트의 충전성을 확보할 수 있는 한계 골재 용적비 등이 고려되어 있지 않아 고성능콘크리트에의 적용 예가 없는 실정이다. 또한 이들 고성능콘크리트의 배합 설계 이론은 일반콘크리트와는 달리 유동성 및 충전성에 중점을 두고 있어 배합 설계에서 강도 특성을 고려하지 않고 있으며, 사용 재료의 단위량은 일반콘크리트와 같이 시행착오법으로 결정하고 있다. 이에 본 연구에서는 고성능콘크리트의 배합 설계에 최대 밀도 이론을 도입하여 사용 골재의 공극이 최소가 되는 최적 잔골재율 산정으로 배합 설계 시 시행착오를 줄이고, 강도를 고려한 최소 단위 결합재량의 결정으로 강도와 유동성을 동시에 만족할 수 있는 합리적이며 간편한 고성능콘크리트의 배합 설계법을 제안하고자 하였다. 연구 결과 본 연구에서 제안된 배합 설계법은 최소 공극을 갖는 최적 잔골재율 사용과 최소 단위 결합재량 이상의 결합재를 사용함으로써 시행착오를 줄일 수 있어 자기충전성을 갖는 고성능콘크리트를 간편하게 제조할 수 있다.
In recent years the field application of high performance concrete has been increased to improve the quality and reliability of concrete structures. The mix design of the high performance concrete includes the 2 set-off mixture theory of mortar and coarse aggregate and that of paste and aggregate. The 2 set-off mixture theory of mortar and coarse aggregate has a problem of having to determine its value through repeated experiments in applying the rheological characteristics of mortar. The 2 set-off mixture theory of paste and aggregate has never been applied to high performance concrete since it doesn't take into account the relationship between optimum fine aggregate ratio and unit volume of powder nor does it consider the critical aggregate volume ratio. As the mixture theory of these high performance concretes, unlike that of general concrete, focuses on flowability and charge-ability, it does not consider intensity features in mix design also, the unit quantity of the materials used is determined by trial and error method in the same way as general concrete. This study is designed to reduce the frequency of trial and error by accurately calculating the optimum fine aggregate ratio, which makes it possible to minimize the aperture of aggregate in use by introducing the maximum density theory to the mix design of high performance concrete. Also, it is intended to propose a simple and reasonable mix design for high performance concrete meeting the requirements for both intensity and flowability. The mix design proposed in this study may reduce trial and error and conveniently produce high performance concrete which has self-chargeability by using more than the minimum unit volume of powder and optimum fine aggregate with minimum porosity.