2D-QSAR and HQSAR Analysis on the Herbicidal Activity and Reactivity of New O,O-dialkyl-1-phenoxy-acetoxy-1-methylphosphonate Analogues

새로운 O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate 유도체들의 반응성과 제초활성에 관한 2D-QSAR 및 HQSAR 분석

  • Sung, Nack-Do (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Jang, Seok-Chan (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Hwang, Tae-Yeon (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 장석찬 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 황태연 (충남대학교 농업생명과학대학 응용생물화학부)
  • Published : 2007.06.30

Abstract

Quantitative structure-activity relationships (QSARs) on the pre-emergency herbicidal activity and reactivity of a series of new O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonates (S) analogues against seed of cucumber (Cucumus Sativa) were discussed quantitatively using 2D-QSAR and HQSAR methods. The statistical values of HQSAR model were better than that of 2D-QSAR model. From the frontier molecular orbital (FMO) interaction between substrate molecule (S) and $BH^+$ ion (I) in PDH enzyme, the electrophilic reaction was superior in reactivity. From the effect of substituents, $R_2$-groups in substrate molecule (S) contributed to electrophilic reaction with carbonyl oxygen atom while X, Y-groups contributed to nucleophilic reaction with carbonyl carbon atom. And the influence of X,Y-groups was more effective than that of $R_2$-groups. As a results of 2D-QSAR model (I & II) and atomic contribution maps with HQSAR model, the more length of X, Y-groups is longer, the more herbicidal activity tends to increased. And also, the optimal ${\epsilon}LUMO$ energy, $({\epsilon}LUMO)_{opt.}$=-0.479 (e.v.) of substrate molecule is important factor in determining the herbicidal activity. It is predicted that the herbicidal activity proceeds through a nucleophilic reaction. From the analytical results of 2D-QSAR and HQSAR model, it is suggested that the structural distinctions and descriptors that contribute to herbicidal activities will be able to applied new herbicide design.

일련의 새로운 O,O-dialkyl-1-phenoxyacetoxy-1-methylphosphonate (S) 유도체들의 반응성과 치환기가 변화함에 따른 오이(Cucumus Sativa)씨에 대한 발아전 제초활성과의 관계를 2D-QSAR 및 HQSAR 방법으로 검토하였다. 통계적으로 HQSAR 모델이 2D-QSAR 모델보다 양호하였으며 기질분자(S)와 PDH 효소중 $BH^+$ 이온(I) 사이의 경계분자궤도(FMO) 상호작용은 친전자성 반응이 우세하였다. 치환기의 효과로부터 기질분자 (S)내 $R_2$-치환기는 carbonyl 산소원자에 대한 친전자성 반응을, 그리고 phenyl 고리상 X,Y-치환기는 carbonyl 탄소원자에 대한 친핵성 반응에 기여하였으며 $R_2$-치환기보다 X,Y-치환기의 영향이 더 컸다. 2D-QSAR모델 (I 및 II)과 HQSAR 모델의 기여도로부터 X,Y-치환기의 길이가 길수록 제초활성이 증가하는 경향이었으며 적정한 ${\epsilon}LUMO$ 에너지($({\epsilon}LUMO)_{opt.}$=-0.479 e.v.)가 제초활성에 중요한 요소이었다. 그러므로 PDH 효소의 저해활성으로 인한 제초활성은 친핵성반응으로 진행될 것으로 예상되었다. 2D-QSAR 및 HQSAR 두 모델로부터 제초활성에 기여하는 기질분자(S)의 구조 특이성과 요소들을 새로운 제초제 설계에 적용할 수 있음을 시사하였다.

Keywords

References

  1. Broka. J. B. and M. Randie. (1996). Application of String Comparison Techniques in QSAR. Studies. J. Com. Chem. 7:176-188
  2. Dewar, M. J. S., E. G. Zoebish, E. F. Healy and J. J. P. Stewart (1985) AMI: A new general purpose quantum mechanical molecular model,. J. Am Chem. Soc., 107:3902 -3909 https://doi.org/10.1021/ja00299a024
  3. Fleming, I. (1976) Frontier Orbitals and Organic Chemical Reactions, John Wiely & Sons, London. Ch.3
  4. FRAC (2005) Fungicide resistance action committee, Internet, Available at http://www.frac.info/frac/index.html
  5. Hanch, C. (1976) The structure of medicinal chemistry. J. Med. Chem., 19: 1 -6 https://doi.org/10.1021/jm00223a001
  6. He, H. W. and J. Wang, Z. J. Liu (2001) Progresses in research of $\alpha$-Oxophosphonic acid derivatives with herbicidal activity. Chinese J. Org. Chem. 21:878-883
  7. He, H. W. and J. Wang, Z. J. Liu (2005) Synthesis and herbicidal activities of methyl-1-(2,4-dichlorophenoxyacetoxy) alkylphosphonate monosalts, J. Organometallic Chem. 690:2608 -2613 https://doi.org/10.1016/j.jorganchem.2005.01.061
  8. He, H. W. (2007) Synthesis and herbicidal activity of alkyl 1-(3-trifluoromethyl-phenoxyacetoxy)-1-substituted methylphosphonates. J. Pestic. Sci., 32:42 -44 https://doi.org/10.1584/jpestics.G06-05
  9. HRAC (2005) Herbicide resistance action committee, Internet. Available at http://www.plantprotection.org/hrac
  10. Heritage, T. W. and D. R. Lowis (1999) In Rational drug design: Novel Methodology and Practical Applications (ed. Parrill, A. L. and M. R), Molecular hologram QSAR. Ch. 4., ACS Symposium Series 719, ACS. Washington, DC
  11. IRAC (2007) Insecticide resistance action committee, Internet, Available at http://www.irac-online.org
  12. Jenks, W. P. (1969) Catalysis in Chemistry and Enzymology, McGraw Hill, New York, N. Y., pp.127-131
  13. Klopman, G. (1974) Chemical Reactivity and Reaction paths, John Wiely & Sons, New York. Ch.4., pp.55-165
  14. Kluger, R. and D. C. Pike, (1977) Active site generated analogues of reactive intermediates in enzymic reactions. Potent inhibition of Pyruvate Dehydrogenase by a phosphonate analogue of Pyruvate. J. Am. Chem. Soc. 99:4504 -4057 https://doi.org/10.1021/ja00455a052
  15. Koike, M., L. J. Reed and W. R. Caroll (1963) a-Keto Acid Dehydrogenation Complexes. IV. Resolution and reconstitution of the escherichia COLI pytuvate dehydrogenation complex. J. Biol. Chem., 238:30-39
  16. Lowis, D. R. (1997) HQSAR. A new, highly prediction QSAR technique. Tripis Technical Notes, Vol. 1.(5)
  17. Mager, P. P. (1998) Multivariate Chemometrics in QSAR: A Dialogue. Letchworth, Hertfordshire, England, Wiley
  18. Mahler, H. R. and E. H. Cordes (1971) 'Biological Chemistry', 2nd ed, Harper and Row, New York N.Y., pp.519-520
  19. SAS, (2002) Statistics & Analysis Software on CD-ROM (Ver. 9.1), SAS Institute Inc., Cary, NC, 27513 U.S.A., http://www.sas.com/software/
  20. Shorter, J. (1982) Correlation Analysis of Organic Reactivity. Research Studies Press, A Division of John Wiley & Sons Ltd singapore. Ch.4., p.79
  21. Stahle, L. and S. Wold (1988) Multivariate data analysis and experimental design inbiomedical research. Progr. Med. Chem. 25:292-338
  22. Stewart, J. J. (1990) MOPAC: A semiempirical molecular orbital program, J. Comp. Aided Mol. Design., 4:1-105 https://doi.org/10.1007/BF00128336
  23. Tipker, J. and A. Verloop (1984) The chemistry of Excitation at Interfaces. Washington, DC. p.279
  24. Tripos, Sybyl (2007) Molecular Modeling and QSAR Software on CD-ROM (Ver. 7.3), Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO. 63144-2913, U.S.A., http://www.tripos.com/bookshelf/ qsar/
  25. TSAR (2000) Proprietary Software (Ver. 3.3), Oxford Molecular Ltd
  26. Wang, T., H. W. He and J. L. Yuan (2003) PDH: A New Reacting Target for Herbicide., Chinese J. Appl. Chem. 20:613-617