References
- 강필성, 이형주, 조성준, '데이터 불균형 문제에서의 SVM 앙상블 기법의 적용', 한국정보과학회 가을 학술발표논문집, 제31권, 제2호, 2005, pp. 706-708
- 김지현, 정종빈, '계급 불균형 자료의 분류 훈련표본 구성방법에 따른 효과', 응용통계연구, 제17권, 제3호, 2004, pp. 445-457
- 오장민, 장병탁, '불균형 데이터의 효과적 학습을 위한 커널 퍼셉트론 부스팅 기법', 한국정보과학회 춘계학술발표논문집(B), 2001, pp. 304-306
- 유상진, 박문로, '데이터 마이닝 기법을 활용한 의료보험 진료비 청구 삭감분석 시스템 개발 및 구현에 관한 연구', Information Systems Review, Vol.7, No.1, pp. 275-295
- 이수연, 하호욱, 손태용, '의료기관과 심사기관의 심사업무인식도 비교연구', 병원경영학회지, 제9권, 제3호, 2004, pp. 71-97
- 장익암, '보험심사 간호사의 업무 스트레스와 대응방법 조사연구', 한양대학교 대학원 간호학과 석사학위 논문, 2000
- 최길림, '의료보험입원진료비 청구누락방지를 위한 병원 자체심사에 관한 연구', 인제대학교 보건대학원 석사논문, 1995
- 허명회, 이용구, 데이터마이닝 모델링과 사례, SPSS 아카데미, 2003
- 허명회, 'K-means Clustering을 활용한 분류예측', 제 10회 SPSS 사용자 사례 발표회, 2005
- Batista G., Pati, R.C., and Monard, M.C. 'A Study of The Behavior of Several Methods for Balancing Machine Learning Training Data', SIGKDD Exploring, Vol.6, No.1, 2004, pp. 20-29 https://doi.org/10.1145/1007730.1007735
- Brieman, L., J.H. Friedman, R.A. Olshen and C. J. Stone, Classification and Regression Trees. Wadsworth, Belmont, 1984
- Chawla, N.V., Kevin W. Boywer, Lawrence O. Hall, and W. Philip Kegelmeyer, 'SMOTE: Synthetic Minority Over-Sampling Technique', Journal of Artificial Intelligence Research, Vol.16, 2002, pp. 231-357
- Chawla, N. V., Nathalie Japkowicz, and Aleksander Kolcz, 'Editorial: Special Issue on Learning from Imbalanced Data Sets', SIGKDD Exploring, Vol.6, No.1, 2004, pp. 1-6 https://doi.org/10.1145/1046456.1046457
- Cristianini, N., and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge: Cambridge University Press, 2000
- Fawcett, T. and F. Provost. 'Combining Data Mining and Machine Learning for Effective User Profile', In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR. AAAI. 1996, pp. 8-13
- Fawcett, T. and F. Provost, 'Adaptive Fraud Detection', Data Mining and Knowledge Discovery, Vol.1, 1997, pp. 291-316 https://doi.org/10.1023/A:1009700419189
- Guo, H., and H. L. Viktor, 'Learning from Imbalanced Data Sets with Boosting and Data Generation: The DataBoost-IM Approach', SIGKDD Explorations, Vol.6, No.1, 2004, pp. 30-39 https://doi.org/10.1145/1007730.1007736
- Hart, P.E., 'The Condensed Nearest Neighbor Rule', IEEE Transactions on Information Theory, Vol.14, No.3, 1968, pp. 515-516 https://doi.org/10.1109/TIT.1968.1054155
- Huang, Kaizhu, Haiqin Yang, Irwin King, and Michael R. Lyu, 'Learning Classifiers from Imbalanced Data Based on Biased Minimax Probability Machine', Proceedings of the '04' IEEE Computer society conference on computer vision and pattern recognition (CVPR'04), 2004, pp. 558-563
- Huang, Yueh-Min, Chun-Min Hung, and Hewijin Christine Jiau, 'Evaluation of Neural Networks and Data Mining Methods on a Credit Assessment Task for Class Imbalance Problem', accepted for publication in Nonlinear Analysis: Real World Applications, 2005
- Japkowicz, Nathalie., 'The Class Imbalance Problem: Significance and Strategies', In Proceedings of the 2000 International Conference on Artificial Intelligence, 2000
- Jo, Taeho., and Nathalie Japkowicz, 'Class Imbalances Versus Small Disjuncts', SIGKDD Explorations, Vol.6, No.1, 2004, pp. 40-49 https://doi.org/10.1145/1007730.1007737
- Kass, G. 'An Exploratory Technique for Investigating Large Quantities of Categorical Delta', Applied Statistics, Vol.29, No.2, 1980, pp. 119-127 https://doi.org/10.2307/2986296
- Laurikkala, J., 'Improving Identification of Difficult Small Classes by Balancing Class Distribution', Tech Rep. A-2001-2, University of Tampere, 2001
- Lewis, D. and Marc Ringuette, 'A Comparison of Two Learning Algorithms for Text Categorization', In Proceedings of SDAIR-94, 3rd Annual Symposium on DocumentAnalysis and Information Retrieval, 1994, pp. 81-93
- Loh, W. and Y. Shin Forthcoming: Split Selection Methods for Classification Trees, Statistica Sinica, Taiwan, 1997
- Kubat, M., Robert C. Holte and Stan Matwin, 'Machine Learning for The Detection of Oil Spills in Satellite Radar Images', Machine Learning, Vol.30, 1998, pp. 195-215 https://doi.org/10.1023/A:1007452223027
- Quinlan, R., C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, California, 1992
- Radivojac, P., Nitesh V. Chawla, A. Keith Dunker, and Zoran Obradovic, 'Classification and Knowledge Discovery in Protein Databases', Journal of Biomedical Informatics, Vol.37, 2004, pp. 224-239 https://doi.org/10.1016/j.jbi.2004.07.008
- Su, Chao-Ton, Long-Sheng Chen, and Yuehwem Yih, 'Knowledge Acquisition through Information Granulation for Imbalanced Data', Expert Systems with Applications, Vol.29, 2005, pp. 1-11 https://doi.org/10.1016/j.eswa.2005.01.004
- Weiss, G.M., and F. Provost, The Effect of Class Distribution on Classifier Learning. Technical Report, Department of Computer Science, Rutgers University, 2001
- http://www.nhic.or.kr, 건강보험관리공단 홈페이지
- http://www.hira.or.kr, 건강보험심사평가원 홈페이지