DOI QR코드

DOI QR Code

Analytical Model for Post Tension Flat Plate Frames

포스트 텐션 플랫 플레이트 골조의 해석모델

  • Published : 2007.12.31

Abstract

This study developed an analytical model for predicting nonlinear behavior of PT flat plate frames having slab-column connections with and without slab bottom reinforcement passing through the column. The developed model can predict the failure sequence until punching failure occurs. For verifying the analytical model, the test results of PT flat plate slab-column connections were compared with the results of the analysis. Moreover, the results of static pushover test and shaking table test of 2 story PT flat plate frame were compared with analysis results. For evaluating seismic performance of PT flat plate frame, this study conducted nonlinear response history analysis of the 2 story PT flat plate frame with and without slab bottom reinforcement passing through the column under 1940 El Centro ground motion scaled to have pseudo spectral acceleration of 0.3, 0.5, and 0.7g at the fundamental period of the frame. This study observed that as ground motion is more intense, seismic demands for the frame having the connections without slab bottom reinforcement passing through the column are larger than those without slab bottom reinforcement.

본 연구에서는 PT 플랫 플레이트 골조의 내진성능을 평가하기 위하여 비선형 거동을 예측할 수 있는 해석모델을 개발하였다. 특히 본 연구에서 개발한 해석 모델은PT 플랫 플레이트 슬래브-기둥 접합부에서 기둥을 관통하는 철근이 있는 경우와 없는 경우의 접합부 거동을 정확하게 예측할 수 있도록 개발하였다. 또한 본 연구에서 개발한 접합부 해석 모델은PT 플랫 플레이트 슬래브-기둥 접합부에서 뚫림 전단 파괴가 발생하는 때를 정확하게 예측하도록 하였다. 개발한 해석 모델의 타당성을 검증하기 위하여PT 플랫 플레이트 슬래브-기둥 접합부 실험결과와 해석 결과를 비교하였다. 또한 2층 PT 플랫 플레이트 골조의 진동대 실험결과와 해석결과를 비교하였다. 본 연구에서는 기둥을 관통하는 철근이 있는 접합부와 없는 접합부를 갖는 2층 PT 플랫 플레이트 골조를 세 가지의 크기로 조정한El Centro 지진에 대하여 비선형 동적 해석을 수행하였다. 지진의 크기가 커지면 하부 철근이 없는 골조의 요구 변위와 잔류 변형이 하부 철근이 있는 골조에 비하여 더욱 커지는 것으로 나타났다.

Keywords

References

  1. ACI Committee 318, 'Building Code Requirements for Reinforced Concrete (ACI 318‐02)', American Concrete Institute, Detroit, 2002
  2. Douglas A. Foutch, William L. Gamble, and Harianto Sunidja, 'Tests of Post‐tensioned Concrete Slab‐Edge Column Connections', ACI Structural Journal, V.87, No. 2, March‐April 1990, pp. 167-179
  3. Martinez-Cruzado, Jose Antonio, 'Experimental study of post‐tensioned flat plate exterior slab‐column connections subjected to gravity and biaxial loading', Ph D Thesis, Department of Civil Engineering, University of Berkeley, CA, 1993
  4. Han, et all, 'Hysteretic behavior of exterior post‐tensioned flat plate connections', Engineering Structures, Elsevier, 28, 2006, pp. 1983-1996 https://doi.org/10.1016/j.engstruct.2006.03.029
  5. S.W. Han, S.‐H.Kee, T.H.‐K.Kang, S.‐S.Ha, J.W.Wallace, L‐H.Lee 'Cyclic behaviour of interior post‐tensioned flat plate connections', Magazine of Concrete Research, Vol 58, 2006, pp. 699-711 https://doi.org/10.1680/macr.2006.58.10.699
  6. S.W. Han, S.‐H.Kee, S.‐S.Ha, J. W. Wallace, 'Effects of Bottom Reinforcement on Hysteretic Behavior of Post‐ Tensioned Flat Plate Connections' submitted to Journal of Structural Engineering, ASCE, 2007
  7. KANG T. H.‐K., 'Shake Table Tests and Analytical Studies of Reinforced and Post‐Tensioned Concrete Flat Plate Frames', Ph.D. Thesis, UCLA, Sept. 2004
  8. Thomas H.‐K. Kang and John W. Wallace, 'Punching of Reinforced,and Post‐Tensioned Concrete Slab‐Column Connections' ACI Structural Journal, V. 103, No. 4, July‐ August 2006. pp. 531-540
  9. Mary Beth D. Hueste and James K. Wight 'NONLINEAR PUNCHING SHEAR FAILURE MODEL FOR INTERIORSLABCOLUMN CONNECTIONS,' JOURNAL OF STRUCTURAL ENGINEERING, V. 125, No. 9 SEPTEMBER 1999, pp. 997-1008 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:9(997)
  10. Elwood, K. J. 'Shake Table Tests and Analytical Studies on the Gravity Load Collapse of Reinforced Concrete Frames', PhD Thesis, Department of Civil and Environmental Engineering, University of California at Berkeley, CA. 2002
  11. OpenSees Development Team. 'OpenSees: Open System for Earthquake Engineering Simulations,' Version 1.7.3, Berkeley, CA. 2006
  12. Austin Pan and Jack P. Moehle. 'Lateral Displacement Ductility of Reinforced Concrete Flat Plates', ACI Structural Journal, V. 86 No. 3, May‐June 1989. pp. 250‐258
  13. Austin Pan and Jack P. Moehle. 'An Experimental Study of Slab‐Column Connections,' ACI Structural Journal, V. 89, No. 6, November‐December 1992, pp. 626-638
  14. Banchik, C.A., 'Effective BeamWidth Coefficients for Equivalent Frame Analysis of Flat‐Plate Structures.' ME thesis, University of California at Berkeley, Cali. May, 1987
  15. Moehle, J. P., and Diebold, J. W., 'Lateral Load Response of Flat Plate Frame,' ASCE, V.111, No.10. Oct. 1985, pp. 2149‐2165 https://doi.org/10.1061/(ASCE)0733-9445(1985)111:10(2149)
  16. Spacone, E., Filippou, F. C., and F. F. Taucer. 'Fiber Beam‐Column Model for Nonlinear Analysis of R/C Frames: Part I. Formulation,' Earthquake Engineering and Structural Dynamics, Vol. 25, 1996, pp. 711‐725
  17. E. Hognestad, N.W. Hanson, D. McHenry, Concrete stress distribution in ultimate strength design, ACI J. 52 (4), 1955, pp. 455–480
  18. NEHRP (1988). Recommended Provisions for the Development of Seismic Regulations for New Buildings, Federal Emergency Management Agency (FEMA). Building Seismic Safety Council, Washington, D.C