비글견에서 좌측앞쪽목신경절 차단에 대한 정량적 뇌파 분석

The Analysis of Quantitative EEG to the Left Cranial Cervical Ganglion Block in Beagle Dogs

  • 박우대 (서정대학 애완동물과) ;
  • 배춘식 (전남대학교 수의과대학 및 생물공학연구소) ;
  • 김세은 (전남대학교 수의과대학 및 생물공학연구소) ;
  • 이수한 (울산대학교 의과대학) ;
  • 이정선 ((주)엠씨티티부설연구소) ;
  • 장화석 (건국대학교 수의과대학) ;
  • 정다정 (건국대학교 수의과대학) ;
  • 이재훈 (건국대학교 수의과대학) ;
  • 김휘율 (건국대학교 수의과대학)
  • Park, Woo-Dae (Department of Veterinary Nurse and Pet Science, Seojeong College) ;
  • Bae, Chun-Sik (College of Veterinary Medicine, Biotechnology Research Institute, Chonnam National University) ;
  • Kim, Se-Eun (College of Veterinary Medicine, Biotechnology Research Institute, Chonnam National University) ;
  • Lee, Soo-Han (Department of Clinical Pharmacology and Therapeutics, College of Medicine, Ulsan University) ;
  • Lee, Jung-Sun (Modern Cell & Tissue Technologies Research Institute) ;
  • Chang, Wha-Seok (Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University) ;
  • Chung, Dai-Jung (Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Jae-Hoon (Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Hwi-Yool (Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University)
  • 발행 : 2007.12.31

초록

교감신경차단은 지배영역에 대한 혈류를 증가시킨다. 이러한 이유로, 교감신경차단은 신경학적 질병이나 뇌질환 등에 시술되어 왔다. 그러나, 개에서 앞쪽목신경절 차단에 의한 뇌혈류의 조절은 잘 알려져 있지 않으며 뇌 순환의 변화와 뇌파의 변화에 대한 상관관계는 아직까지 개에서 잘 정의되어 있지 않다. 그래서, 우리는 뇌파의 변화는 개에서 앞쪽목신경절 차단에 의한 뇌혈류의 변화에 영향을 받을 수 있을 거라는 가설을 검증하였다. 25두의 비글견을 3개의 군으로 나누었다. I군(LCCGB, n=10)은 1% lidocaine을 이용하여 좌측 앞쪽목신경절을 차단하였다. II군(L, n=10)은 1% lidocaine을 좌 우측 두힘살근 내에 주입하였다. III군(N/SCCGB, n=5, 대조군)은 좌측 앞쪽목신경절을 생리식염수를 이용하여 차단하였다. 95% SEF와 MF에서는 대조군과 LCCGB군에서 통계적 차이가 없었다. 상대적 주파수 영역에서는 $\delta$ 주파수는 5-25분 사이에 감소하였으며, $\alpha$ 주파수는 같은 시간 동안 증가 하였다(p<0.05). 그러나, $\theta$ 주파수와 $\beta$ 주파수는 같은 시간대 대조군에 비해 유의한 변화를 보이지 않았다(p<0.05). 이러한 결과는 좌측 앞쪽목신경절 차단은 뇌혈류의 변화를 유발하지 못하며 그 자체의 효과는 불확실 하다는 것을 제시한다.

The sympathetic nerve block improves the blood flow in the innervated regions. For this region, the sympathetic nerve block has been performed in the neural and cerebral disorders. However, the cerebral blood flow regulation of the cranial cervical ganglion block in dogs have not been well defined and the correlation to the changes in the cerebral circulation and the changes in the electroencephalogram is not well defined in dogs yet. Therefore, we investigated the hypothesis that changes in the EEG could be affected by the changes in cerebral blood flow following the cranial cervical ganglion block in dogs. Twenty five beagle dogs were divided into 3 groups; group I(LCCGB, n=10) underwent left sided cranial cervical ganglion block using the 1% lidocaine, group II(L, n=10) injected the 1% lidocaine into the right or left sided digastricus muscle, group III(N/SCCGB, n=5, served as control) underwent the left sided cranial cervical ganglion block using saline. A statistical difference was not found between the control group and the LCCGB group in the 95% spectral edge frequency(SEF) and the median frequency(MF). In the relative band power, the $\delta$ frequency was decreased during 5-25 min, while the $\alpha$ frequency was increased during the same time(p<0.05). But the $\theta$ frequency and the $\beta$ frequency were not shown the significant changes compared with the control group during the same time(p<0.05). These results suggest that the left cranial cervical ganglion block does not induce the change of the cerebral blood flow and its effect is insignificant.

키워드

참고문헌

  1. Alborch E, Gomez B, Dieguez G. Cerebral blood flow and vascular reactivity after removal of the superior cervical sympathetic ganglion in the goat. Circ Res 1977; 41: 278-282 https://doi.org/10.1161/01.RES.41.3.278
  2. Archer JS, Abbott DF, Waites AB, Jacson GD. fMRI 'deactivation' of the posterior cingulate during generalized spike and wave. Neuroimage 2003; 20(4): 1915-1922 https://doi.org/10.1016/S1053-8119(03)00294-5
  3. Bergamasco L, Accatino A, Priano L, Neiger-Aeschbacher G, Cizinauskas S, Jaggy A. Quantitative electroencephalographic findings in beagles anaesthetized with propofol. Vet J 2003; 166: 58-66 https://doi.org/10.1016/S1090-0233(02)00254-X
  4. Choi YG, Song JH, Lim HK, Han JW, Lee SK, Cha YD, Shin JK, Ryu JH. The effects of stellate ganglion block on the level of plasma adrenocorticotrophic hormone (ACTH) and cortisol. J Kor Pain Soc 2002; 15(1): 58-62
  5. Cottrell JE, Smith DS. Anesthesia and neurosurgery. 3rd ed. St Louis: Mosby. 1994: 17-28
  6. Cottrell JE, Turndorf H. Anesthesia and neurosurgery. 2nd ed. St Louis: Mosby. 1986: 9-10
  7. Dirk H, Shari RW, Julian FT. Central and autonomic nervous system integration in emotion. Brain Cogn 2003; 52: 79-87 https://doi.org/10.1016/S0278-2626(03)00011-3
  8. Fines BS, Yanoff M, Stone RA. A clinicopathologic study of four cases of primary open angle glaucoma compared to normal eye. Am J Ophthalmol 1981; 9: 88-105
  9. Heistead D, Marcus M, Gross P. Effects of sympathetic stimulation on cerebral vessels in dog, cat and monkey. Am J Physiol 1978; 235: 544-552
  10. Hendree I, Ronald T, Jean I, Roland R. Caffeine withdrawal increases cerebral blood flow velocity and alters quantitative electroencephalography activity. Psychopharmacology 2000; 147: 371-377 https://doi.org/10.1007/s002130050005
  11. Hernandez-perez MJ, Raichle ME, Stone HL. The role of the peripheral sympathetic nervous system in cerebral blood flow autoregulation. Stroke 1975; 6: 284-92 https://doi.org/10.1161/01.STR.6.3.284
  12. Itamoto K, Taura Y, Wada N, Takuma T, Une S, Nakaichi M, Hikasa Y. Quantitative electroencephalography of medetomidine- midazolam-butopharnol in dogs. J Vet Med Sci 2002; 49: 169-172
  13. Kilner JM, Mattout R, Henson R, Friston KJ. Hemodynamic correlates of EEG: A heulistic. Neuroimage 2005; 28: 280-286 https://doi.org/10.1016/j.neuroimage.2005.06.008
  14. Klakov K, Lemieux L, Messina D, Scott CA, Symms MR, Duncan JS, Fisher DR. Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. Epileptic Dis 2001; 3(2): 67-74
  15. Redding R, Knech C. Seizure discharges and the electroencephalogram in organic disease of the CNS. In: Atlas of electroencephalography in the dog and cat, 1st ed. New York: Praeger. 1984: 244-330
  16. Schmidt CF, Hendrix JP. The action of chemical substances on cerebral blood vessels. Res Publ Ass Nerv Ment Dis 1938; 18: 229-276
  17. Schraag S, Mohl U, Bothner U, Georgieff M. Clinical utility of EEG parameters to predict loss of consciousness and response to skin incision during total intravenous anaesthesia. Anesthesia 1998; 53: 320-325 https://doi.org/10.1046/j.1365-2044.1998.00311.x
  18. Seo YS, Kim SH, Hur CR, Lee KJ, Lee SY, Kim CH, Kim C, Lee YS, Lee DC. Changes in blood flow velocity of middle cerebral artery after stellate ganglion block. J Kor Pain Soc 1996; 9: 57-62
  19. Wakusugi B. New application of stellate ganglion block. J Kor Pain Soc 1991; 4: 1-7
  20. Wittling W, Block A, Genzel S, Schweiger E. Hemisphere asymmetry in parasympathetic control of the heart. Neuropsychologia 1998a; 36: 461-468 https://doi.org/10.1016/S0028-3932(97)00129-2
  21. Wittling W, Block A, Genzel S, Schweiger E. Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cogn 1998b; 38: 17-35 https://doi.org/10.1006/brcg.1998.1000