DOI QR코드

DOI QR Code

Design and Analysis of Mach-Zehnder-Interferometer-Based Silica Planar Lightwave Circuit Triplexer

마하젠더 간섭계로 구성된 실리카 평판 광 도파회로 트라이플렉서의 설계 및 분석

  • Lee, Tae-Hyung (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Lee, Dong-Hyun (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Chung, Young-Chul (Department of Electronics and Communications Engineering, Kwangwoon University)
  • 이태형 (광운대학교 전자통신공학과) ;
  • 이동현 (광운대학교 전자통신공학과) ;
  • 정영철 (광운대학교 전자통신공학과)
  • Published : 2007.12.25

Abstract

A triplexer based on a silica planar lightwave circuit Mach-Zehnder nterferometer(MZI) is proposed and its characteristics are analyzed through simulations. To separate 1310 nm band and $1480{\sim}1560nm$ band properly, the path length difference of an MZI is set to be the multiple and half of the wavelength 1310 nm and the balance of the directional coupler is optimized in the $1480{\sim}1560nm$ band. The same MZI is additionally cascaded to provide good crosstalk characteristics. The 1490 nm band and 1550 nm band are further separated using additional two stage MZI's. A three-dimensional BPM and transfer matrix method analysis predicts the low crosstalk characteristics and the fabrication-error-tolerance of the proposed triplexer.

실리카 평판 광집적회로 마하젠더 간섭 구조를 이용한 트라이플렉서를 제안하고, 시뮬레이션을 통해 그 특성을 분석하였다. 1310 nm 대역과 $1480{\sim}1560nm$ 대역을 분리하기 위하여 마하젠더 암의 길이 차는 1310 nm 파장의 정수배 더하기 반 파장으로 하고, 방향성 결합기의 균형도는 $1480{\sim}1560nm$ 대역에서 적정화하였다. 이와 같은 마하젠더 간섭 구조를 한 단 더 사용함으로써, 매우 우수한 채널 누화 특성을 얻을 수 있었다. 1490 nm 대역과 1550 nm 대역을 추가적으로 분리하기 위하여 마하젠더 간섭구조를 추가로 두 단 더 사용하였다. 삼차원 BPM과 전송행렬방법을 통하여 각 채널들 사이의 낮은 누화 특성을 확인하였고, 제작 과정에서 발생할 수 있는 공정오차에 둔감한 특성을 보임을 확인하였다.

Keywords

References

  1. H. Shinohara, 'Broadband Access in Japan: Rapidly Growing FTTH Market,' IEEE Communications Magazine, Vol. 43, No.9, pp. 72-78, September 2005 https://doi.org/10.1109/MCOM.2005.1509970
  2. J. Ahn, Y. Lee, K. Kwak, D. Shin, S. Kim, and T. Kim, 'Developiment of a Novel and Cost-effective Bi-directional Optical Triplexer,' IEEE Electronic Components and Technology Conference 2004, pp. 1396-1399, 2004 https://doi.org/10.1109/ECTC.2004.1320294
  3. M. Yanagisawa, Y. Inoue, M. Ishii, T. Oguchi, Y. Hida, H. Izurnita, N. Araki, and T. Sugie, 'Low-loss and compact TFF embedded silica waveguide WDM filter for video distribution services in FTIH systems,' in OFC 2004, Los Angeles, CA, February 2004, pp.TuI4
  4. S. Kim et al., 'Low-Crosstalk Design of 1.25 Gbps Optical Triplexer Module for FTTH Systems,' ETRI Journal, Vol. 28, No.1, February 2006
  5. X. Li, G.-R. Zhou, N.-N. Feng, and W. Huang, 'A Novel Planar Waveguide Wavelength Demultiplexer Design for Integrated Optical Triplexer Transceiver,' IEEE Photonics Technology Letters, Vol. 17, No.6, pp. 1214-1216, June 2005 https://doi.org/10.1109/LPT.2005.846620
  6. Jeong Hwan Song et al., 'Bragg Grating-Assisted WDM Filter for Integrated Optical Triplexer Transceivers,' IEEE Photonics Technology Letters, Vol. 17, No. 12, December 2005 https://doi.org/10.1109/LPT.2005.859181
  7. George T. Kanellos et al., 'All-Optical 3R Burst Reception at 40 Gb/s Using Four Integrated MZI Switches,' Journal of Lightwave Technology, Vol. 25, No.1, January 2007 https://doi.org/10.1109/JLT.2006.888169
  8. C. Kostrzewa, R. Moosburger, G. Fischbeck, B. Schiippert, and K. Petermann, 'Tunable Polymer Optical Add/Drop Filter for Multiwavelength Networks,' IEEE Photonics Technology Letters, Vol. 9, No. 11, November 1997 https://doi.org/10.1109/68.634717
  9. A. Takagi et al., 'Silica-Based Waveguide Type-Wavelength-Insensitive Coupler (WINC's) with Series-Tapered Coupling Structure,' IEEE Journal of Lightwave Technology, Vol. 10, pp. 1814-1824, 1992 https://doi.org/10.1109/50.202833
  10. Akio Sugita, Kaname Jinguji, Norio Takato, and Masao Kawachi, 'Laser-Trimming Adjustment of Waveguide Birefringence in Optical FDM Components,' IEEE Journal on Selected Areas in Communications, Vol. 8, No.6, August 1990 https://doi.org/10.1109/49.57817