Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem

이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화

  • Published : 2007.08.30

Abstract

The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

본 연구에서는 미분 가능한 함수가 Taylor 전개로 표현되고 그 계수들은 주어진 함수와 미분에 대한 근사값을 제공할 수 있다는 점에 착안하여 m차 Taylor 다항식을 구성하고 이동최소제곱법을 이용하여 그 계수들을 구했다. 계산된 근사함수와 미분을 콜로케이션 개념을 바탕으로 균열 문제를 포함하는 고체문제에 대한 지배 미분방정식에 적용하여 차분식 형태의 이산화된 계방정식을 구성하였다. 본 연구의 해석기법은 격자망(grid)에 의존적이고 근사함수가 없는 유한차분법과 형상함수의 미분과 약형식의 적분산정, 필수경계조건 처리가 어려운 Galerkin법 기반의 무요소법의 단점을 효과적으로 극복한 새로운 수치기법이다.

Keywords

References

  1. 윤영철, 서창범, 김명원, 이상호 (2005) 무요소법의 약정식화와 강정식화를 위한 일관된 분산미분근사 (1) : 수학적 이론배경 및 이산화. 대한토목학회논문집, 25(5), pp.907-913
  2. Belytschko, T., Lu, Y. Y., Gu, L. (1994) Element-free galerkin methods. International Journal for Numerical Methods in Engineering, 37. pp.229-256 https://doi.org/10.1002/nme.1620370205
  3. Belytschko, T., Krongauz, J., Dolbow, J., Gerlach, C. (1998) On the completeness of Meshfree particle methods. International Journal for Numerical Methods in Engineering. 43, pp.785-819 https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO;2-9
  4. Kim, D. W., Kim, Y-S. (2003) Point collocation methods using the fast moving least square reproducing kernel approximation. International Journal for Numerical Methods in Engineering, 56, pp.1445-1464 https://doi.org/10.1002/nme.618
  5. Krongauz, Y., Belytschko, T. (1997) A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG., Computational Mechanics, 19, pp.327-333 https://doi.org/10.1007/s004660050181
  6. Lee, S. H, Yoon, Y. C. (2004) Meshfree point collocation method for elasticity and crack problem. International Journal for Numerical Methods in Engineering, 61. pp.22-48 https://doi.org/10.1002/nme.1053
  7. Li, S., Liu, W. K. (2002) Meshfree and particle methods and their applications. Applied Mechanics Review. 55, pp.1-34 https://doi.org/10.1115/1.1431547
  8. Liu, W. K., Jun, S., Zhang, Y. (1995) Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20, pp.1081-1106 https://doi.org/10.1002/fld.1650200824
  9. Luo, Y., Haussler-Combe, U. (2002) A generalized finite-difference method based on minimizing global residual. Computer Methods in Applied Mechanics and Engineering, 191. pp .1421-1438 https://doi.org/10.1016/S0045-7825(01)00331-0
  10. Moran, B., Shih, C. F. (1987) Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics, 27, pp.615-641 https://doi.org/10.1016/0013-7944(87)90155-X
  11. Nayroles, B., Touzot, G., Villon, P. (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 10, pp.307-318 https://doi.org/10.1007/BF00364252
  12. Tada, H., Paris, P. C., Irwin, G. R. (1973) The stress analysis of cracks handbook, Del Research Corporation
  13. Park, S. H., Youn, S. K. (2001) The least-squares meshfree method. International Journal for Numerical Methods in Engineering, 52, pp.997-1012 https://doi.org/10.1002/nme.248
  14. Yoon, Y. C, Lee, S. H., Belytschko, T. (2006) Enriched Collocation Method with Diffuse Derivatives for Elastic Fracture. Computers & Mathematics with Applications, 51. pp.1349-1366 https://doi.org/10.1016/j.camwa.2006.04.010