박리를 고려한 지하박스구조물의 화재하중해석 II : 내하력

Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling II : Load Carrying Capacity

  • 이계희 (목포해양대학교 해양시스템공학부) ;
  • 김선훈 (영동대학교 토목환경공학과)
  • 발행 : 2007.08.30

초록

본 논문에서는 1편에서 얻어진 온도분포와 박리시간이력을 이용하여 지하박스구조물의 열응력을 산정하고 이에 기반한 열모멘트를 산청하였다. 또한 이때의 온도분포를 바탕으로 구조물의 열적비선형성을 고려한 극한모멘트를 산정하여 구조물의 내하력을 산정하였다. 그 결과 상부슬래브의 부모멘트 구간은 단면의 온도경사에 의해서 발생하는 열모멘트에 의해 지배받는 것으로 나타났다. 반면 정모멘트 구간은 박리에 의해 화염에 노출된 철근의 항복응력에 의해 지배받는 것으로 나타났다.

In this study, based on the temperature distribution and the spalling histories those obtained in the companion paper, the thermal stress and moments of underground box structure were estimated. Additionally, the ultimate sectional moment considering with the thermal nonlinearities of material were estimated and the load carrying capacity of underground box structure was also obtained. As results, the load carrying capacity of negative moment part was dominated by thermal moment that come from thermal gradient of the section. However, the load carrying capacity of the positive moment part was rules by the yield stress of rebar that exposed to the high temperature induced spalling phenomena.

키워드

참고문헌

  1. 이계희, 최익창 (2007) 박리를 고려한 지하박스구조물의 화재 하중해석 I: 박리해석, 한국전산구조공학회 논문집, 20(4), pp.477-483
  2. ABAQUS Inc (2005) ABAQUS 6.5 User's Manual
  3. Msaad, Y., Bonnet, G. (2006) Analyses of Heated Concrete Spalling due to Restrained Thermal Dilation: Application to the 'Chunnel' Fire, Journal of Engineering Mechanics, 132(0), pp. 1124-1132 https://doi.org/10.1061/(ASCE)0733-9399(2006)132:10(1124)
  4. Savov, K., Lackner, R., Mang, H.A. (2005) Stability assessment of shallow tunnels subjected to fire load, Fire Safety Journal, 40, pp.745-763 https://doi.org/10.1016/j.firesaf.2005.07.004
  5. Shi, X., Tan, T.H., Tan, K.H., Guo Z. (2002) Effect of Force Temperature Paths on Behaviors of Reinforced Concrete Flexural Members. Journal of Structural Engineering, 128(3). pp.365-373 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(365)
  6. Mounajed, G., Obeid, W. (2004) A new coupling F.E. model for the simulation of thermal hydromechanical behaviour of concretes at high temperatures, Materials and Structures, 37, pp.422-432
  7. Chung, J.H., Consolazio, G.R. (2005) Numerical modeling of transport phenomena in reinforced concrete exposed to elevated temperatures, Cement and Concrete Research 35, pp.597-608 https://doi.org/10.1016/j.cemconres.2004.05.037
  8. Caner, A., Zlatanic, S., Munfah, N. (2005) Structural fire performance of concrete and shotcrete tunnel liners, Journal of Structural Engineering, 131 (12), pp.1920-1925 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1920)
  9. Tenchev, R., Purnell, P. (2005) An application of a damage constitutive model to concrete at high temperature and prediction of spalling, International Journal of Solids and Structures, 42, pp.6550-6565 https://doi.org/10.1016/j.ijsolstr.2005.06.016
  10. UIm, F.J., Coussy, O., Bazant, Z.P. (1999a) The Chunne1'fire. I: Chemoplastic softening in rapidly heated concrete, Journal Engineering Mechanics, 1253, pp.272-282
  11. Ulm, F.J., Acker, P., Levy, M. (1999b) The Chunnel'fire. II: Analysis of concrete damage, Journal Engineering Mechanics, 1253, pp.283-289